Genetic Fixes 2

This commit is contained in:
Asrın Doğan 2019-12-18 23:05:18 +03:00
parent 90740194d0
commit 535c4548aa
2 changed files with 203 additions and 51 deletions

View File

@ -33,6 +33,7 @@
"xstddef": "cpp",
"xstring": "cpp",
"xtr1common": "cpp",
"xutility": "cpp"
"xutility": "cpp",
"fstream": "cpp"
}
}

View File

@ -4,6 +4,7 @@
#define RandomRange 1
#define InitialSynapseValue 0.0
#define MutationRate 0.0001
#define CrossOverRate 0.1
class Synapse;
class Neuron;
@ -33,6 +34,7 @@ float RandomFloat(int min, int max)
float bias;
public:
Synapse();
~Synapse();
void SetValue(float);
void SetWeight(float);
void SetBias(float);
@ -41,9 +43,15 @@ float RandomFloat(int min, int max)
Synapse::Synapse()
{
// std::cout << "Created Synapse\n";
this -> value = this -> weight = this -> bias = InitialSynapseValue;
}
Synapse::~Synapse()
{
// std::cout << "Deleted Synapse\n";
}
void Synapse::SetValue(float value)
{
this -> value = value;
@ -79,6 +87,7 @@ float RandomFloat(int min, int max)
int layerSize;
public:
Neuron();
~Neuron();
void ConnectIncomings(Synapse *, int);
void ConnectForwards(Synapse *, int, int);
void SetValue(float);
@ -88,8 +97,15 @@ float RandomFloat(int min, int max)
Neuron::Neuron()
{
// std::cout << "Created Neuron\n";
incomings = forwards = NULL;
incomingsSize = forwardsSize = layerSize = 0;
}
Neuron::~Neuron()
{
// std::cout << "Deleted Neuron\n";
}
void Neuron::Reset()
@ -100,7 +116,8 @@ float RandomFloat(int min, int max)
void Neuron::SetValue(float value)
{
for (int i = 0; i < forwardsSize; i++)
int i;
for (i = 0; i < forwardsSize; i++)
(forwards + i) -> SetValue(value);
}
@ -119,17 +136,18 @@ float RandomFloat(int min, int max)
float Neuron::GetValue()
{
int i;
float result = 0.0;
if(!incomings) return result;
for (int i = 0; i < incomingsSize; i++)
for (i = 0; i < incomingsSize; i++)
result += (incomings + i) -> Fire();
if(!forwards) return result;
for (int i = 0; i < forwardsSize; i++)
for (i = 0; i < forwardsSize; i++)
(forwards + i * layerSize) -> SetValue(result);
return result;
@ -143,15 +161,18 @@ float RandomFloat(int min, int max)
Synapse *synapses;
int neuronSize;
int synapseSize;
void _SwapSynapses(Synapse *, Synapse *);
Neuron *_CreateNeurons(int);
Synapse *_CreateSynapses(int);
public:
Layer();
Layer(int);
~Layer();
void CopySynapses(Layer *);
void FireLayer();
void Mutate();
void RandomizeValues();
void CrossOverSynapses(Layer *);
bool CreateNeurons(int);
bool ConnectPrevious(Layer *);
bool ConnectForwards(Layer *);
@ -160,6 +181,7 @@ float RandomFloat(int min, int max)
Layer::Layer()
{
// std::cout << "Created Layer\n";
neuronSize = synapseSize = 0;
neurons = NULL;
synapses = NULL;
@ -167,6 +189,7 @@ float RandomFloat(int min, int max)
Layer::Layer(int size)
{
// std::cout << "Deleted Layer\n";
neuronSize = synapseSize = 0;
synapses = NULL;
neurons = _CreateNeurons(size);
@ -174,17 +197,28 @@ float RandomFloat(int min, int max)
Layer::~Layer()
{
// std::cout << "Deleted Layer\n";
if(neurons) delete neurons;
if(synapses) delete synapses;
}
void Layer::_SwapSynapses(Synapse *first, Synapse *second)
{
Synapse temporary = Synapse();
temporary = *first;
*first = *second;
*second = temporary;
}
Neuron *Layer::_CreateNeurons(int size)
{
int i;
Neuron *newNeurons = NULL;
newNeurons = new Neuron[size];
if(newNeurons)
for (int i = 0; i < size; i++)
for (i = 0; i < size; i++)
(newNeurons + i) -> Reset();
return newNeurons;
@ -198,9 +232,17 @@ float RandomFloat(int min, int max)
return newSynapses;
}
void Layer::CopySynapses(Layer *from)
{
int counter;
for (counter = 0; counter < this -> synapseSize; counter++)
*(synapses + counter) = *((from -> synapses) + counter);
}
void Layer::FireLayer()
{
for (int i = 0; i < neuronSize; i++)
int i;
for (i = 0; i < neuronSize; i++)
(neurons + i) -> GetValue();
}
@ -208,7 +250,9 @@ float RandomFloat(int min, int max)
{
float bias;
float weight;
for (int i = 0; i < synapseSize; i++)
int i;
for (i = 0; i < synapseSize; i++)
{
bias = RandomFloat(-RandomRange, RandomRange);
weight = RandomFloat(-RandomRange, RandomRange);
@ -222,8 +266,9 @@ float RandomFloat(int min, int max)
float bias = 0.0;
float weight = 0.0;
float mutationValue = 0.0;
int i;
for (int i = 0; i < synapseSize; i++)
for (i = 0; i < synapseSize; i++)
{
mutationValue = RandomFloat(0, 1);
if(mutationValue <= MutationRate)
@ -236,9 +281,17 @@ float RandomFloat(int min, int max)
}
}
void Layer::CrossOverSynapses(Layer *other)
{
int thisCounter;
for (thisCounter = 0; thisCounter < synapseSize; thisCounter++)
if(RandomFloat(0, 1) < CrossOverRate)
_SwapSynapses((synapses + thisCounter), (other -> synapses + thisCounter));
}
bool Layer::CreateNeurons(int size)
{
if(neurons = _CreateNeurons(size))
if((neurons = _CreateNeurons(size)))
neuronSize = size;
return neurons;
}
@ -247,25 +300,24 @@ float RandomFloat(int min, int max)
{
int previousSize = previous -> GetSize();
int synapseCount = (this -> neuronSize) * previousSize;
int currentIndex = 0;
Synapse *currentSynapse = NULL;
int thisNeuron;
int prevNeuron;
Neuron *currentNeuron = NULL;
if(synapses) delete synapses;
if(synapses)
{
delete synapses;
synapses = NULL;
}
// synapses = (Synapse *) new char[sizeof(Synapse) * synapseCount];
synapses = _CreateSynapses(synapseCount);
if(!synapses) return false;
for (int thisNeuron = 0; thisNeuron < this -> neuronSize; thisNeuron++)
for (thisNeuron = 0; thisNeuron < this -> neuronSize; thisNeuron++)
{
for (int prevNeuron = 0; prevNeuron < previousSize; prevNeuron++)
{
currentIndex = thisNeuron * previousSize + prevNeuron;
currentSynapse = (synapses + currentIndex);
for (prevNeuron = 0; prevNeuron < previousSize; prevNeuron++)
currentNeuron = (previous -> neurons) + prevNeuron;
// *currentSynapse = Synapse();
}
currentNeuron = (neurons + thisNeuron);
currentNeuron -> ConnectIncomings((synapses + thisNeuron * previousSize), previousSize);
@ -278,12 +330,14 @@ float RandomFloat(int min, int max)
bool Layer::ConnectForwards(Layer *forwards)
{
int forwardsSize = forwards -> neuronSize;
int thisNeuron;
int forwardNeuron;
Neuron *currentNeuron = NULL;
for (int thisNeuron = 0; thisNeuron < this -> neuronSize; thisNeuron++)
for (thisNeuron = 0; thisNeuron < this -> neuronSize; thisNeuron++)
{
currentNeuron = (neurons + thisNeuron);
for (int forwardNeuron = 0; forwardNeuron < forwardsSize; forwardNeuron++)
for (forwardNeuron = 0; forwardNeuron < forwardsSize; forwardNeuron++)
currentNeuron -> ConnectForwards(forwards -> synapses + thisNeuron, forwardsSize, this -> neuronSize);
}
return true;
@ -338,13 +392,19 @@ float RandomFloat(int min, int max)
Layer *hidden;
Output *output;
int hiddenSize;
Input *_CreateInput();
Layer *_CreateLayers(int);
Output *_CreateOutput();
public:
NeuralNetwork();
NeuralNetwork(int);
~NeuralNetwork();
void Copy(const NeuralNetwork &);
void FireNetwork();
void RandomizeValues();
void MutateNetwork();
void Reset();
void CrossOverNetwork(NeuralNetwork *);
bool SetInputNeurons(int);
bool SetHiddenNeurons(int, int);
bool SetOutputNeurons(int);
@ -352,11 +412,37 @@ float RandomFloat(int min, int max)
bool SetLayer(int);
float GetOutput(int);
float GetScore(float, int);
int GetHiddenSize();
void SetInput(float, int);
};
Input *NeuralNetwork::_CreateInput()
{
Input *newInputs = NULL;
newInputs = new Input();
return newInputs;
}
Layer *NeuralNetwork::_CreateLayers(int size)
{
Layer *newLayers = NULL;
newLayers = new Layer[size];
return newLayers;
}
Output *NeuralNetwork::_CreateOutput()
{
Output *newOutputs = NULL;
newOutputs = new Output();
return newOutputs;
}
NeuralNetwork::NeuralNetwork()
{
// std::cout << "Created NeuralNetwork\n";
hiddenSize = 0;
input = NULL;
hidden = NULL;
@ -365,46 +451,89 @@ float RandomFloat(int min, int max)
NeuralNetwork::NeuralNetwork(int hiddenSize)
{
// std::cout << "Created NeuralNetwork\n";
this -> hiddenSize = hiddenSize;
input = new Input();
hidden = new Layer(hiddenSize);
output = new Output();
input = _CreateInput();
hidden = _CreateLayers(hiddenSize);
output = _CreateOutput();
}
NeuralNetwork::~NeuralNetwork()
{
if(input) delete input;
if(hidden) delete hidden;
if(output) delete output;
// std::cout << "Deleted NeuralNetwork\n";
if(input)
delete input;
if(hidden)
delete hidden;
if(output)
delete output;
}
void NeuralNetwork::Copy(const NeuralNetwork &parameter)
{
int i;
input -> CopySynapses(parameter.input);
for (i = 0; i < hiddenSize; i++)
(hidden + i) -> CopySynapses(parameter.hidden + i);
output -> CopySynapses(parameter.output);
}
void NeuralNetwork::FireNetwork()
{
for (int i = 0; i < hiddenSize; i++)
int i;
for (i = 0; i < hiddenSize; i++)
(hidden + i) -> FireLayer();
output -> FireLayer();
}
void NeuralNetwork::MutateNetwork()
{
int i;
input -> Mutate();
for (int i = 0; i < hiddenSize; i++)
for (i = 0; i < hiddenSize; i++)
(hidden + i) -> Mutate();
output -> Mutate();
}
void NeuralNetwork::CrossOverNetwork(NeuralNetwork *other)
{
int i;
input -> CrossOverSynapses(other -> input);
for (i = 0; i < hiddenSize; i++)
(hidden + i) -> CrossOverSynapses((other -> hidden) + i);
output -> CrossOverSynapses(other -> output);
}
void NeuralNetwork::RandomizeValues()
{
int i;
input -> RandomizeValues();
for (int i = 0; i < hiddenSize; i++)
for (i = 0; i < hiddenSize; i++)
(hidden + i) -> RandomizeValues();
output -> RandomizeValues();
}
void NeuralNetwork::Reset()
{
input = NULL;
hidden = NULL;
output = NULL;
}
bool NeuralNetwork::SetInputNeurons(int size)
{
return input -> CreateNeurons(size);
@ -422,10 +551,12 @@ float RandomFloat(int min, int max)
bool NeuralNetwork::ConnectLayers()
{
int i;
if(!hidden -> ConnectPrevious(input))
return false;
for (int i = 1; i < hiddenSize; i++)
for (i = 1; i < hiddenSize; i++)
if(!(hidden + i) -> ConnectPrevious((hidden + i - 1)))
return false;
@ -438,9 +569,10 @@ float RandomFloat(int min, int max)
bool NeuralNetwork::SetLayer(int hiddenSize)
{
this -> hiddenSize = hiddenSize;
input = new Input();
hidden = new Layer(hiddenSize);
output = new Output();
input = _CreateInput();
hidden = _CreateLayers(hiddenSize);
output = _CreateOutput();
return input && hidden && output;
}
float NeuralNetwork::GetOutput(int index = 0)
@ -453,6 +585,10 @@ float RandomFloat(int min, int max)
float result = GetOutput(index) - target;
return result < 0.0 ? -result : result;
}
int NeuralNetwork::GetHiddenSize()
{
return hiddenSize;
}
void NeuralNetwork::SetInput(float value, int index = 0)
{
@ -467,7 +603,7 @@ float RandomFloat(int min, int max)
int size;
int step;
float target;
void SwapNetworks(NeuralNetwork *, NeuralNetwork *);
void _SwapNetworks(NeuralNetwork *, NeuralNetwork *);
NeuralNetwork *_CreateNetworks(int, int);
public:
Generation();
@ -488,6 +624,7 @@ float RandomFloat(int min, int max)
Generation::Generation()
{
// std::cout << "Created Generation\n";
step = 0;
networks = NULL;
size = 0;
@ -496,6 +633,7 @@ float RandomFloat(int min, int max)
Generation::Generation(int size, int hiddenSizes)
{
// std::cout << "Created Generation\n";
step = 0;
target = 0.0;
this -> size = size;
@ -504,16 +642,18 @@ float RandomFloat(int min, int max)
Generation::~Generation()
{
// std::cout << "Deleted Generation\n";
if(networks) delete networks;
}
NeuralNetwork *Generation::_CreateNetworks(int size, int hiddenSizes)
{
int i;
NeuralNetwork *newNetworks = NULL;
newNetworks = new NeuralNetwork[size];
if(newNetworks)
for (int i = 0; i < size; i++)
for (i = 0; i < size; i++)
(newNetworks + i) -> SetLayer(hiddenSizes);
return newNetworks;
@ -521,37 +661,43 @@ float RandomFloat(int min, int max)
void Generation::Randomize()
{
for (int i = 0; i < this -> size; i++)
int i;
for (i = 0; i < this -> size; i++)
(networks + i) -> RandomizeValues();
}
void Generation::Fire()
{
for (int i = 0; i < this -> size; i++)
int i;
for (i = 0; i < this -> size; i++)
(networks + i) -> FireNetwork();
}
void Generation::SwapNetworks(NeuralNetwork *first, NeuralNetwork *second)
void Generation::_SwapNetworks(NeuralNetwork *first, NeuralNetwork *second)
{
NeuralNetwork temp;
temp = *first;
*first = *second;
*second = temp;
temp.Reset();
}
void Generation::DisplayScores(int index = 0)
{
int i;
std::cout << "----Scores----\n";
for (int i = 0; i < this -> size; i++)
for (i = 0; i < this -> size; i++)
std::cout << i << " -> " << (networks + i) -> GetScore(target, index) << "\n";
}
void Generation::SortByScore(int index = 0)
{
for (int i = 0; i < size - 1; i++)
for (int j = i + 1; j < size; j++)
int i;
int j;
for (i = 0; i < size - 1; i++)
for (j = i + 1; j < size; j++)
if((networks + i) -> GetScore(target, index) > (networks + j) -> GetScore(target, index))
SwapNetworks((networks + i), (networks + j));
_SwapNetworks((networks + i), (networks + j));
}
void Generation::SetTarget(float target)
@ -561,7 +707,8 @@ float RandomFloat(int min, int max)
void Generation::SetInput(float value, int index = 0)
{
for (int i = 0; i < this -> size; i++)
int i;
for (i = 0; i < this -> size; i++)
(networks + i) -> SetInput(value, index);
}
@ -574,7 +721,8 @@ float RandomFloat(int min, int max)
bool Generation::ConnectNetworks()
{
for (int i = 0; i < this -> size; i++)
int i;
for (i = 0; i < this -> size; i++)
if(!(networks + i) -> ConnectLayers())
return false;
@ -583,7 +731,8 @@ float RandomFloat(int min, int max)
bool Generation::SetInputNeurons(int size)
{
for (int i = 0; i < this -> size; i++)
int i;
for (i = 0; i < this -> size; i++)
if(!(networks + i) -> SetInputNeurons(size))
return false;
return true;
@ -591,7 +740,8 @@ float RandomFloat(int min, int max)
bool Generation::SetHiddenNeurons(int index, int size)
{
for (int i = 0; i < this -> size; i++)
int i;
for (i = 0; i < this -> size; i++)
if(!(networks + i) -> SetHiddenNeurons(index, size))
return false;
return true;
@ -599,17 +749,18 @@ float RandomFloat(int min, int max)
bool Generation::SetOutputNeurons(int size)
{
for (int i = 0; i < this -> size; i++)
int i;
for (i = 0; i < this -> size; i++)
if(!(networks + i) -> SetOutputNeurons(size))
return false;
return true;
}
#pragma endregion
int main(int argc, char const *argv[])
int main()
{
Generation generation(50, 3);
std::cout << "1 - ";
std::cout << generation.SetInputNeurons(1) << "\n";
std::cout << "2 - ";
@ -631,6 +782,6 @@ int main(int argc, char const *argv[])
std::cout << "-----------SORTING-----------\n";
generation.SortByScore();
generation.DisplayScores();
return 0;
}