Initial Commit

This commit is contained in:
Asrın Doğan 2019-12-13 16:15:44 +03:00
parent afff9ee7da
commit 9f64919676

483
main.cpp Normal file
View File

@ -0,0 +1,483 @@
#include <iostream>
#include <cstdlib>
#include <time.h>
float RandomFloat(int min, int max)
{
static unsigned long int counter = 0;
srand(time(0) + counter++ * 50);
int value = (rand() % ((max - min) * 100));
return (float)value / 100.0 + (float)min + 1.0;
}
#pragma region Sinaps
class Sinaps
{
private:
float weight; // Ağırlık
float value; // Değer
float bias; // Öteleme
public:
Sinaps();
Sinaps(float, float, float); // Kaydedilen değerleri yeniden yazabilmek için
void SetSinaps(float, float, float); // Sonradan tamamen değiştirebilmek için
void SetWeight(float);
void SetValue(float);
void SetBias(float);
float Fire();
};
Sinaps::Sinaps() { weight = value = bias = 0.0; }
Sinaps::Sinaps(float weight, float value, float bias)
{
this -> weight = weight;
this -> value = value;
this -> bias = bias;
}
void Sinaps::SetSinaps(float weight, float value, float bias) {
std::cout << "weight = " << weight << "\n";
std::cout << "value = " << value << "\n";
std::cout << "bias = " << bias << "\n";
Sinaps(weight, value, bias); }
void Sinaps::SetWeight(float weight) { this -> weight = weight; }
void Sinaps::SetValue(float value) { std::cout << value << "\n"; this -> value = value; }
void Sinaps::SetBias(float bias) { this -> bias = bias; }
float Sinaps::Fire() { return weight * value + bias; }
#pragma endregion
#pragma region Noron
class Noron
{
private:
Sinaps *forwards;
Sinaps *incoming;
int forwardsCount;
int incomingCount;
public:
Noron();
~Noron();
bool SetForwards(Sinaps *, int);
bool SetIncoming(Sinaps *, int);
float GetStatus();
};
Noron::Noron()
{
forwards = incoming = NULL;
forwardsCount = incomingCount = 0;
}
Noron::~Noron()
{
delete forwards;
delete incoming;
}
bool Noron::SetForwards(Sinaps *newForwards, int size)
{
forwards = (Sinaps *) new char[sizeof(Sinaps) * size];
if(!forwards) return false;
for (int i = 0; i < size; i++)
*(forwards+i) = *(newForwards+i);
forwardsCount = size;
return true;
}
bool Noron::SetIncoming(Sinaps *newIncoming, int size)
{
incoming = (Sinaps *) new char[sizeof(Sinaps) * size];
if(!incoming) return false;
for (int i = 0; i < size; i++)
*(incoming+i) = *(newIncoming+i);
incomingCount = size;
return true;
}
float Noron::GetStatus()
{
float toplam = 0.0;
std::cout << toplam << "\n";
for (int i = 0; i < incomingCount; i++)
toplam += (incoming + i) -> Fire();
for (int i = 0; i < forwardsCount; i++)
(forwards + i) -> SetValue(toplam);
return toplam;
}
#pragma endregion
#pragma region Katman
class Katman
{
protected:
Noron *neurons;
Katman *forward;
Sinaps *layerSinapses;
int size;
Sinaps *CreateSinapsSet(int size);
public:
Katman();
Katman(int);
~Katman();
void FireLayer();
void RandomizeSinapsValues();
bool SetForward(Katman *);
bool SetIncoming(Sinaps *sinapsSet, int backwardsNeuronCount);
bool SetNoron(Noron *, int);
bool CreateNoron(int);
int GetSize();
};
Katman::Katman() { neurons = NULL; this -> size = 0; }
Katman::Katman(int size)
{
Katman();
if(!CreateNoron(size))
std::cout << "Katman Oluşturulamadı!";
else
this -> size = size;
}
Katman::~Katman() { delete neurons; }
Sinaps *Katman::CreateSinapsSet(int size)
{
Sinaps* sinapses = (Sinaps *) new char[sizeof(Sinaps) * size];
if(sinapses)
for (int i = 0; i < size; i++)
*(sinapses + i) = Sinaps();
return sinapses;
}
void Katman::RandomizeSinapsValues()
{
if(!forward)
return;
int sinapsCount = size * (forward -> GetSize());
for (int i = 0; i < sinapsCount; i++)
{
(layerSinapses + i) -> SetSinaps(
RandomFloat(-5, 5),
RandomFloat(-5, 5),
RandomFloat(-5, 5)
);
}
}
void Katman::FireLayer()
{
for (int i = 0; i < size; i++)
std::cout << i << ". Fire = " << (neurons + i) -> GetStatus() << "\n";
}
bool Katman::SetForward(Katman *forward)
{
Sinaps *sinapses = NULL; // Pointer to store all created sinapses
Sinaps *newSinapses = NULL; // Temporary Pointer for creating each neurons' s1inapses
int forwardSize;
int sinapsesIndex = 0;
delete layerSinapses;
this -> forward = forward;
if(!forward)
return true;
forwardSize = forward -> GetSize();
sinapses = (Sinaps *) new char[sizeof(Sinaps) * size * forwardSize];
if(!sinapses)
return false;
// Set Forwards of each neuron in the Layer
for (int thisCounter = 0; thisCounter < size; thisCounter++)
{
newSinapses = CreateSinapsSet(forwardSize);
if(!newSinapses)
return false;
(neurons + thisCounter) -> SetForwards(newSinapses, forwardSize);
// Add each sinaps to the array
for (int forwardCounter = 0; forwardCounter < forwardSize; forwardCounter++)
*(sinapses + (sinapsesIndex++)) = *(newSinapses + forwardCounter);
}
layerSinapses = sinapses;
// Send the sinapses to the forward layer
return forward -> SetIncoming(sinapses, size);
}
bool Katman::SetIncoming(Sinaps *sinapsSet, int backwardsNeuronCount)
{
Sinaps *sinapses = NULL;
sinapses = (Sinaps *) new char[sizeof(Sinaps) * backwardsNeuronCount];
if(!sinapses)
return false;
for (int thisCounter = 0; thisCounter < size; thisCounter++)
{
// Add each sinaps to the array
for (int incomingCounter = 0; incomingCounter < backwardsNeuronCount; incomingCounter++)
*(sinapses + (size * thisCounter + incomingCounter)) = *(sinapsSet + incomingCounter);
(neurons + thisCounter) -> SetIncoming(sinapses, backwardsNeuronCount);
}
return true;
}
bool Katman::SetNoron(Noron *newneurons, int size)
{
neurons = (Noron *) new char[sizeof(Noron) * size];
if(!neurons) return false;
for (int i = 0; i < size; i++)
*(neurons+i) = *(newneurons+i);
this -> size = size;
return true;
}
bool Katman::CreateNoron(int size)
{
neurons = (Noron *) new char[sizeof(Noron) * size];
if(!neurons) return false;
for (int i = 0; i < size; i++)
*(neurons+i) = Noron();
this -> size = size;
return true;
}
int Katman::GetSize() { return size; }
#pragma endregion
#pragma region Girdi-Cikti
#pragma region Girdi
class Girdi : public Katman
{
public:
Girdi();
Girdi(int);
void SetValue(int, float);
};
Girdi::Girdi() : Katman() {}
Girdi::Girdi(int size) : Katman(size) {}
void Girdi::SetValue(int index, float value)
{
Sinaps *editedSinaps = NULL;
int forwardNeuronCount = forward -> GetSize();
for (int i = 0; i < forwardNeuronCount; i++)
{
editedSinaps = (layerSinapses + index * forwardNeuronCount + i);
editedSinaps -> SetValue(value);
}
}
#pragma endregion
#pragma region Cikti
class Cikti : public Katman
{
public:
Cikti();
Cikti(int);
float GetValue(int);
};
Cikti::Cikti() : Katman() {}
Cikti::Cikti(int size) : Katman(size) {}
float Cikti::GetValue(int index)
{
return (neurons + index) -> GetStatus();
}
#pragma endregion
#pragma endregion
#pragma region NeuralNetwork
class NeuralNetwork
{
private:
Girdi *input;
Katman *hiddenLayers;
Cikti *output;
int hiddenSize;
public:
NeuralNetwork();
NeuralNetwork(int);
~NeuralNetwork();
void SetInput(int, float);
void RandomizeNetworkValues();
void FireNetwork();
bool SetInputNeurons(int);
bool SetHiddenLayerNeurons(int, int);
bool SetOutputNeurons(int);
bool ConnectLayers();
float GetOutputValue(int);
};
NeuralNetwork::NeuralNetwork()
{
hiddenSize = 0;
input = NULL;
hiddenLayers = NULL;
output = NULL;
}
NeuralNetwork::NeuralNetwork(int hiddenSize)
{
input = new Girdi();
hiddenLayers = new Katman[hiddenSize];
output = new Cikti();
if(!input)
std::cout << "Girdi Katmani Olusturulamadi!" << "\n";
if(!hiddenLayers)
std::cout << "Ara Katmanlar Olusturulamadi!" << "\n";
if(!output)
std::cout << "Cikti Katmani Olusturulamadi!" << "\n";
if(!input || !hiddenLayers || !output)
return;
this -> hiddenSize = hiddenSize;
}
NeuralNetwork::~NeuralNetwork()
{
delete input;
delete hiddenLayers;
delete output;
}
bool NeuralNetwork::SetHiddenLayerNeurons(int index, int size)
{
Noron *neurons = new Noron[size];
if(!neurons)
return false;
return (hiddenLayers + index) -> SetNoron(neurons, size);
}
bool NeuralNetwork::SetInputNeurons(int size)
{
Noron *neurons = new Noron[size];
if(!neurons)
return false;
return output -> SetNoron(neurons, size);
}
bool NeuralNetwork::SetOutputNeurons(int size)
{
Noron *neurons = new Noron[size];
if(!neurons)
return false;
return input -> SetNoron(neurons, size);
}
bool NeuralNetwork::ConnectLayers()
{
if(!input -> SetForward(hiddenLayers))
return false;
for (int i = 0; i < hiddenSize - 1; i++)
if(!(hiddenLayers + i) -> SetForward(hiddenLayers + i + 1))
return false;
if(!(hiddenLayers + hiddenSize - 1) -> SetForward(output))
return false;
return output -> SetForward(NULL);
}
void NeuralNetwork::FireNetwork()
{
input -> FireLayer();
for (int i = 0; i < hiddenSize; i++)
(hiddenLayers + i) -> FireLayer();
output -> FireLayer();
}
void NeuralNetwork::SetInput(int index, float value)
{
if(!input)
return;
input -> SetValue(index, value);
}
void NeuralNetwork::RandomizeNetworkValues()
{
input -> RandomizeSinapsValues();
for (int i = 0; i < hiddenSize; i++)
(hiddenLayers + i) -> RandomizeSinapsValues();
output -> RandomizeSinapsValues();
}
float NeuralNetwork::GetOutputValue(int index)
{
return output -> GetValue(index);
}
#pragma endregion
int main(int argc, char const *argv[])
{
NeuralNetwork network(3);
network.SetInputNeurons(1);
network.SetHiddenLayerNeurons(0, 2);
network.SetHiddenLayerNeurons(1, 3);
network.SetHiddenLayerNeurons(2, 2);
network.SetOutputNeurons(1);
network.ConnectLayers();
network.RandomizeNetworkValues();
network.SetInput(0, 1);
std::cout << "m1\n";
network.FireNetwork();
std::cout << "m2\n";
std::cout << network.GetOutputValue(0) << "\n";
std::cout << "m3\n";
// Katman k1(5);
// Katman k2(3);
// std::cout << "k1 SetForward = " << k1.SetForward(&k2) << "\n";
// std::cout << "k2 SetForward = " << k2.SetForward(NULL) << "\n";
// k1.FireLayer();
// k2.FireLayer();
return 0;
}