Cleaning_1
This commit is contained in:
parent
25b1839763
commit
df6028922a
142
Genetic.cpp
142
Genetic.cpp
|
@ -3,9 +3,9 @@
|
|||
|
||||
#define RandomRange 1
|
||||
#define InitialSynapseValue 0.0
|
||||
#define MutationRate 0.15
|
||||
#define CrossOverRate 0.1
|
||||
#define PopCrossOverRate 0.95
|
||||
#define MutationRate 0.25
|
||||
#define CrossOverRate 0.25
|
||||
#define PopCrossOverRate 0.7
|
||||
|
||||
class Synapse;
|
||||
class Neuron;
|
||||
|
@ -23,7 +23,6 @@ float RandomFloat(int min, int max)
|
|||
srand(time(0) * counter++);
|
||||
value = ((rand() * counter) % ((max - min) * 100000));
|
||||
result = (float)value / 100000.0 + (float)min;
|
||||
// std::cout << "random is " << result << "\n";
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -48,13 +47,11 @@ float RandomFloat(int min, int max)
|
|||
|
||||
Synapse::Synapse()
|
||||
{
|
||||
// std::cout << "Created Synapse\n";
|
||||
this -> value = this -> weight = this -> bias = InitialSynapseValue;
|
||||
}
|
||||
|
||||
Synapse::~Synapse()
|
||||
{
|
||||
// std::cout << "Deleted Synapse\n";
|
||||
}
|
||||
|
||||
void Synapse::SetValue(float value)
|
||||
|
@ -117,7 +114,6 @@ float RandomFloat(int min, int max)
|
|||
|
||||
Neuron::Neuron()
|
||||
{
|
||||
// std::cout << "Created Neuron\n";
|
||||
incomings = forwards = NULL;
|
||||
incomingsSize = forwardsSize = layerSize = 0;
|
||||
}
|
||||
|
@ -125,7 +121,6 @@ float RandomFloat(int min, int max)
|
|||
|
||||
Neuron::~Neuron()
|
||||
{
|
||||
// std::cout << "Deleted Neuron\n";
|
||||
}
|
||||
|
||||
void Neuron::Reset()
|
||||
|
@ -202,7 +197,6 @@ float RandomFloat(int min, int max)
|
|||
|
||||
Layer::Layer()
|
||||
{
|
||||
// std::cout << "Created Layer\n";
|
||||
neuronSize = synapseSize = 0;
|
||||
neurons = NULL;
|
||||
synapses = NULL;
|
||||
|
@ -210,7 +204,6 @@ float RandomFloat(int min, int max)
|
|||
|
||||
Layer::Layer(int size)
|
||||
{
|
||||
// std::cout << "Deleted Layer\n";
|
||||
neuronSize = synapseSize = 0;
|
||||
synapses = NULL;
|
||||
neurons = _CreateNeurons(size);
|
||||
|
@ -218,7 +211,6 @@ float RandomFloat(int min, int max)
|
|||
|
||||
Layer::~Layer()
|
||||
{
|
||||
// std::cout << "Deleted Layer\n";
|
||||
if(neurons) delete neurons;
|
||||
if(synapses) delete synapses;
|
||||
}
|
||||
|
@ -330,7 +322,6 @@ float RandomFloat(int min, int max)
|
|||
delete synapses;
|
||||
synapses = NULL;
|
||||
}
|
||||
// synapses = (Synapse *) new char[sizeof(Synapse) * synapseCount];
|
||||
synapses = _CreateSynapses(synapseCount);
|
||||
if(!synapses) return false;
|
||||
|
||||
|
@ -413,6 +404,7 @@ float RandomFloat(int min, int max)
|
|||
Layer *hidden;
|
||||
Output *output;
|
||||
int hiddenSize;
|
||||
float score;
|
||||
Input *_CreateInput();
|
||||
Layer *_CreateLayers(int);
|
||||
Output *_CreateOutput();
|
||||
|
@ -424,9 +416,9 @@ float RandomFloat(int min, int max)
|
|||
void FireNetwork();
|
||||
void RandomizeValues();
|
||||
void MutateNetwork();
|
||||
friend void WriteToFile(NeuralNetwork *);
|
||||
void Reset();
|
||||
void CrossOverNetwork(NeuralNetwork *);
|
||||
friend void WriteToFile(NeuralNetwork *);
|
||||
bool SetInputNeurons(int);
|
||||
bool SetHiddenNeurons(int, int);
|
||||
bool SetOutputNeurons(int);
|
||||
|
@ -434,8 +426,10 @@ float RandomFloat(int min, int max)
|
|||
bool SetLayer(int);
|
||||
float GetOutput(int);
|
||||
float GetError(int, float);
|
||||
float GetScore(int);
|
||||
float GetPrediction(int);
|
||||
float GetScore();
|
||||
int GetHiddenSize();
|
||||
void SetScore(float);
|
||||
void SetInput(float, int);
|
||||
};
|
||||
|
||||
|
@ -465,7 +459,6 @@ float RandomFloat(int min, int max)
|
|||
|
||||
NeuralNetwork::NeuralNetwork()
|
||||
{
|
||||
// std::cout << "Created NeuralNetwork\n";
|
||||
hiddenSize = 0;
|
||||
input = NULL;
|
||||
hidden = NULL;
|
||||
|
@ -474,7 +467,6 @@ float RandomFloat(int min, int max)
|
|||
|
||||
NeuralNetwork::NeuralNetwork(int hiddenSize)
|
||||
{
|
||||
// std::cout << "Created NeuralNetwork\n";
|
||||
this -> hiddenSize = hiddenSize;
|
||||
input = _CreateInput();
|
||||
hidden = _CreateLayers(hiddenSize);
|
||||
|
@ -483,7 +475,6 @@ float RandomFloat(int min, int max)
|
|||
|
||||
NeuralNetwork::~NeuralNetwork()
|
||||
{
|
||||
// std::cout << "Deleted NeuralNetwork\n";
|
||||
if(input) delete input;
|
||||
if(hidden) delete hidden;
|
||||
if(output) delete output;
|
||||
|
@ -644,12 +635,17 @@ float RandomFloat(int min, int max)
|
|||
return result < 0.0 ? -result : result;
|
||||
}
|
||||
|
||||
float NeuralNetwork::GetScore(int index = 0)
|
||||
float NeuralNetwork::GetPrediction(int index = 0)
|
||||
{
|
||||
float result = GetOutput(index);
|
||||
return result;
|
||||
}
|
||||
|
||||
float NeuralNetwork::GetScore()
|
||||
{
|
||||
return score;
|
||||
}
|
||||
|
||||
int NeuralNetwork::GetHiddenSize()
|
||||
{
|
||||
return hiddenSize;
|
||||
|
@ -659,6 +655,11 @@ float RandomFloat(int min, int max)
|
|||
{
|
||||
input -> SetValue(value, index);
|
||||
}
|
||||
|
||||
void NeuralNetwork::SetScore(float value)
|
||||
{
|
||||
score = value;
|
||||
}
|
||||
#pragma endregion
|
||||
#pragma region Generation
|
||||
class Generation
|
||||
|
@ -676,27 +677,27 @@ float RandomFloat(int min, int max)
|
|||
~Generation();
|
||||
void Randomize();
|
||||
void Fire();
|
||||
void SortByScore(int);
|
||||
void SortByScoreArray(float *, int, int);
|
||||
void SortByScore();
|
||||
void DisplayScores(int);
|
||||
void DisplayBest(int);
|
||||
void SetTarget(float);
|
||||
void SetInput(float, int);
|
||||
void NextGeneration();
|
||||
void WriteBestToFile();
|
||||
void UpdateScores();
|
||||
void ResetScores();
|
||||
bool CreateNetworks(int, int);
|
||||
bool ConnectNetworks();
|
||||
bool SetInputNeurons(int);
|
||||
bool SetHiddenNeurons(int, int);
|
||||
bool SetOutputNeurons(int);
|
||||
float GetBest(int);
|
||||
float GetBestPrediction(int);
|
||||
float GetError(int);
|
||||
int GetStep();
|
||||
};
|
||||
|
||||
Generation::Generation()
|
||||
{
|
||||
// std::cout << "Created Generation\n";
|
||||
step = 0;
|
||||
networks = NULL;
|
||||
size = 0;
|
||||
|
@ -705,7 +706,6 @@ float RandomFloat(int min, int max)
|
|||
|
||||
Generation::Generation(int size, int hiddenSizes)
|
||||
{
|
||||
// std::cout << "Created Generation\n";
|
||||
step = 0;
|
||||
target = 0.0;
|
||||
this -> size = size;
|
||||
|
@ -714,7 +714,6 @@ float RandomFloat(int min, int max)
|
|||
|
||||
Generation::~Generation()
|
||||
{
|
||||
// std::cout << "Deleted Generation\n";
|
||||
if(networks) delete networks;
|
||||
}
|
||||
|
||||
|
@ -764,44 +763,45 @@ float RandomFloat(int min, int max)
|
|||
|
||||
void Generation::DisplayBest(int index = 0)
|
||||
{
|
||||
std::cout << "Target -> " << target << "\tBest -> " << networks -> GetScore(index) << "\n";
|
||||
std::cout << "Target -> " << target << "\tBest -> " << networks -> GetPrediction(index) << "\n";
|
||||
}
|
||||
|
||||
float Generation::GetBest(int index = 0)
|
||||
void Generation::UpdateScores()
|
||||
{
|
||||
return networks -> GetScore(index);
|
||||
float scoreToAdd;
|
||||
int i;
|
||||
for (i = 0; i < size; i++)
|
||||
{
|
||||
scoreToAdd = (networks + i) -> GetError(0, target);
|
||||
(networks + i) -> SetScore((networks + i) -> GetScore() + scoreToAdd);
|
||||
}
|
||||
}
|
||||
|
||||
void Generation::ResetScores()
|
||||
{
|
||||
int i;
|
||||
for (i = 0; i < size; i++)
|
||||
(networks + i) -> SetScore(0.0);
|
||||
}
|
||||
|
||||
float Generation::GetBestPrediction(int index = 0)
|
||||
{
|
||||
return networks -> GetPrediction(index);
|
||||
}
|
||||
|
||||
float Generation::GetError(int index = 0)
|
||||
{
|
||||
return (networks + index) -> GetError(0, target);
|
||||
}
|
||||
void Generation::SortByScore(int index = 0)
|
||||
void Generation::SortByScore()
|
||||
{
|
||||
int i;
|
||||
int j;
|
||||
for (i = 0; i < size - 1; i++)
|
||||
for (j = i + 1; j < size; j++)
|
||||
if((networks + i) -> GetError(index, target) > (networks + j) -> GetError(index, target))
|
||||
if((networks + i) -> GetScore() > (networks + j) -> GetScore())
|
||||
_SwapNetworks((networks + i), (networks + j));
|
||||
}
|
||||
void Generation::SortByScoreArray(float *array, int size, int index = 0)
|
||||
{
|
||||
int i;
|
||||
int j;
|
||||
float temp;
|
||||
|
||||
for (i = 0; i < size - 1; i++)
|
||||
for (j = i + 1; j < size; j++)
|
||||
if(*(array + i) > *(array + j))
|
||||
{
|
||||
temp = *(array + i);
|
||||
*(array + i) = *(array + j);
|
||||
*(array + j) = temp;
|
||||
_SwapNetworks((networks + i), (networks + j));
|
||||
}
|
||||
// if((networks + i) -> GetError(index, target) > (networks + j) -> GetError(index, target))
|
||||
}
|
||||
|
||||
void Generation::SetTarget(float target)
|
||||
{
|
||||
|
@ -832,7 +832,6 @@ float RandomFloat(int min, int max)
|
|||
NeuralNetwork *second = NULL;
|
||||
Fire();
|
||||
|
||||
// for (; i < size; i+=2)
|
||||
for (i = 2; i < crossOverCount; i+=2)
|
||||
{
|
||||
first = (networks + i);
|
||||
|
@ -849,7 +848,6 @@ float RandomFloat(int min, int max)
|
|||
second -> MutateNetwork();
|
||||
}
|
||||
}
|
||||
// SortByScore();
|
||||
|
||||
for (; i < size; i++)
|
||||
(networks + i) -> RandomizeValues();
|
||||
|
@ -905,8 +903,6 @@ float RandomFloat(int min, int max)
|
|||
}
|
||||
#pragma endregion
|
||||
|
||||
|
||||
|
||||
int main()
|
||||
{
|
||||
FILE *inputFile;
|
||||
|
@ -917,20 +913,18 @@ int main()
|
|||
|
||||
int inputCounter;
|
||||
int floatCounter;
|
||||
int i;
|
||||
int j;
|
||||
int generationCounter;
|
||||
int groupSize;
|
||||
float trainInputs[30][5];
|
||||
float scores[50];
|
||||
float testInputs[120][5];
|
||||
Generation generation(50, 5);
|
||||
|
||||
inputFile = fopen("Data/train.data", "r");
|
||||
for (inputCounter = 0; inputCounter < 30; inputCounter++)
|
||||
for (floatCounter = 0; floatCounter < 5; floatCounter++)
|
||||
fscanf(inputFile, "%f,", &trainInputs[inputCounter][floatCounter]);
|
||||
fclose(inputFile);
|
||||
inputFile = fopen("Data/test.data", "r");
|
||||
for (inputCounter = 0; inputCounter < 150; inputCounter++)
|
||||
for (inputCounter = 0; inputCounter < 120; inputCounter++)
|
||||
for (floatCounter = 0; floatCounter < 5; floatCounter++)
|
||||
fscanf(inputFile, "%f,", &testInputs[inputCounter][floatCounter]);
|
||||
fclose(inputFile);
|
||||
|
@ -971,31 +965,23 @@ int main()
|
|||
std::cout << trainCounter++ << "\n";
|
||||
for (inputCounter = 0; inputCounter < 10; inputCounter++)
|
||||
{
|
||||
// for (generationCounter = 0; generationCounter < 25; generationCounter++)
|
||||
// {
|
||||
for (j = 0; j < 50; j++)
|
||||
scores[j] = 0.0;
|
||||
for (i = 0; i < 3; i++)
|
||||
{
|
||||
for (floatCounter = 0; floatCounter < 4; floatCounter++)
|
||||
generation.SetInput(trainInputs[inputCounter * 3 + i][floatCounter], floatCounter);
|
||||
generation.SetTarget(trainInputs[inputCounter * 3 + i][4]);
|
||||
generation.Fire();
|
||||
for (j = 0; j < 50; j++)
|
||||
scores[j] += generation.GetError(j);
|
||||
}
|
||||
generation.SortByScoreArray(scores, 50);
|
||||
generation.NextGeneration();
|
||||
// generation.NextGeneration();
|
||||
// }
|
||||
generation.ResetScores();
|
||||
for (groupSize = 0; groupSize < 3; groupSize++)
|
||||
{
|
||||
for (floatCounter = 0; floatCounter < 4; floatCounter++)
|
||||
generation.SetInput(trainInputs[inputCounter * 3 + groupSize][floatCounter], floatCounter);
|
||||
generation.SetTarget(trainInputs[inputCounter * 3 + groupSize][4]);
|
||||
generation.Fire();
|
||||
generation.UpdateScores();
|
||||
}
|
||||
generation.SortByScore();
|
||||
generation.NextGeneration();
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Best -> " << scores[0] << "\n";
|
||||
std::cout << "Best -> " << generation.GetError() << "\n";
|
||||
std::cout << "Train is Over!\n";
|
||||
case -2:
|
||||
outputFile = fopen("Data/results.data", "w");
|
||||
trainCounter = 0;
|
||||
for (inputCounter = 0; inputCounter < 120; inputCounter++)
|
||||
{
|
||||
for (floatCounter = 0; floatCounter < 4; floatCounter++)
|
||||
|
@ -1003,10 +989,8 @@ int main()
|
|||
generation.SetTarget(testInputs[inputCounter][4]);
|
||||
|
||||
generation.Fire();
|
||||
// generation.DisplayBest();
|
||||
currentError = testInputs[inputCounter][4] - generation.GetBest() < 0 ? generation.GetBest() - testInputs[inputCounter][4] : testInputs[inputCounter][4] - generation.GetBest();
|
||||
// fprintf(outputFile, "Original = %f\t->\tTrained -> %f\t Error = %f\n", testInputs[inputCounter][4], generation.GetBest(), currentError);
|
||||
fprintf(outputFile, "%f,%f,%f\n", testInputs[inputCounter][4], generation.GetBest(), currentError);
|
||||
currentError = testInputs[inputCounter][4] - generation.GetBestPrediction() < 0 ? generation.GetBestPrediction() - testInputs[inputCounter][4] : testInputs[inputCounter][4] - generation.GetBestPrediction();
|
||||
fprintf(outputFile, "%f,%f,%f\n", testInputs[inputCounter][4], generation.GetBestPrediction(), currentError);
|
||||
}
|
||||
fclose(outputFile);
|
||||
std::cout << "Test is Over!\n";
|
||||
|
|
Loading…
Reference in New Issue