Generations Part 1
This commit is contained in:
parent
5c195a7b19
commit
ea71002d07
271
Genetic.cpp
271
Genetic.cpp
|
@ -2,7 +2,7 @@
|
|||
#include <time.h>
|
||||
|
||||
#define RandomRange 1
|
||||
#define InitialSynapseValue 1.0
|
||||
#define InitialSynapseValue 0.0
|
||||
#define MutationRate 0.0001
|
||||
|
||||
class Synapse;
|
||||
|
@ -20,6 +20,7 @@ float RandomFloat(int min, int max)
|
|||
srand(time(0) * counter++);
|
||||
value = ((rand() * counter) % ((max - min) * 100000));
|
||||
result = (float)value / 100000.0 + (float)min;
|
||||
// std::cout << "random is " << result << "\n";
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -37,7 +38,7 @@ float RandomFloat(int min, int max)
|
|||
void SetBias(float);
|
||||
float Fire();
|
||||
};
|
||||
|
||||
|
||||
Synapse::Synapse()
|
||||
{
|
||||
this -> value = this -> weight = this -> bias = InitialSynapseValue;
|
||||
|
@ -63,7 +64,7 @@ float RandomFloat(int min, int max)
|
|||
float result = 0.0;
|
||||
|
||||
result = this -> value * this -> weight + this -> bias;
|
||||
|
||||
|
||||
return result;
|
||||
}
|
||||
#pragma endregion
|
||||
|
@ -83,25 +84,25 @@ float RandomFloat(int min, int max)
|
|||
void SetValue(float);
|
||||
float GetValue();
|
||||
};
|
||||
|
||||
|
||||
Neuron::Neuron()
|
||||
{
|
||||
incomings = forwards = NULL;
|
||||
incomingsSize = forwardsSize = layerSize = 0;
|
||||
}
|
||||
|
||||
|
||||
void Neuron::SetValue(float value)
|
||||
{
|
||||
for (int i = 0; i < forwardsSize; i++)
|
||||
(forwards + i) -> SetValue(value);
|
||||
}
|
||||
|
||||
|
||||
void Neuron::ConnectIncomings(Synapse *incomings, int incomingsSize)
|
||||
{
|
||||
this -> incomings = incomings;
|
||||
this -> incomingsSize = incomingsSize;
|
||||
}
|
||||
|
||||
|
||||
void Neuron::ConnectForwards(Synapse *forwards, int forwardsSize, int layerSize)
|
||||
{
|
||||
this -> forwards = forwards;
|
||||
|
@ -148,21 +149,21 @@ float RandomFloat(int min, int max)
|
|||
bool ConnectForwards(Layer *);
|
||||
int GetSize();
|
||||
};
|
||||
|
||||
|
||||
Layer::Layer()
|
||||
{
|
||||
neuronSize = synapseSize = 0;
|
||||
neurons = NULL;
|
||||
synapses = NULL;
|
||||
}
|
||||
|
||||
|
||||
Layer::Layer(int size)
|
||||
{
|
||||
neuronSize = synapseSize = 0;
|
||||
synapses = NULL;
|
||||
neurons = _CreateNeurons(size);
|
||||
}
|
||||
|
||||
|
||||
Layer::~Layer()
|
||||
{
|
||||
if(neurons) delete neurons;
|
||||
|
@ -173,7 +174,7 @@ float RandomFloat(int min, int max)
|
|||
{
|
||||
Neuron *newNeurons = NULL;
|
||||
newNeurons = (Neuron *) new char[sizeof(Neuron) * size];
|
||||
|
||||
|
||||
if(newNeurons)
|
||||
for (int i = 0; i < size; i++)
|
||||
*(newNeurons + i) = Neuron();
|
||||
|
@ -194,7 +195,7 @@ float RandomFloat(int min, int max)
|
|||
for (int i = 0; i < synapseSize; i++)
|
||||
{
|
||||
bias = RandomFloat(-RandomRange, RandomRange);
|
||||
weight = RandomFloat(-RandomRange, RandomRange);
|
||||
weight = RandomFloat(-RandomRange, RandomRange);
|
||||
(synapses + i) -> SetBias(bias);
|
||||
(synapses + i) -> SetWeight(weight);
|
||||
}
|
||||
|
@ -246,14 +247,14 @@ float RandomFloat(int min, int max)
|
|||
currentIndex = thisNeuron * previousSize + prevNeuron;
|
||||
currentSynapse = (synapses + currentIndex);
|
||||
currentNeuron = (previous -> neurons) + prevNeuron;
|
||||
|
||||
|
||||
*currentSynapse = Synapse();
|
||||
}
|
||||
|
||||
currentNeuron = (neurons + thisNeuron);
|
||||
currentNeuron -> ConnectIncomings((synapses + thisNeuron * previousSize), previousSize);
|
||||
}
|
||||
|
||||
|
||||
synapseSize = synapseCount;
|
||||
return previous -> ConnectForwards(this);
|
||||
}
|
||||
|
@ -262,7 +263,7 @@ float RandomFloat(int min, int max)
|
|||
{
|
||||
int forwardsSize = forwards -> neuronSize;
|
||||
Neuron *currentNeuron = NULL;
|
||||
|
||||
|
||||
for (int thisNeuron = 0; thisNeuron < this -> neuronSize; thisNeuron++)
|
||||
{
|
||||
currentNeuron = (neurons + thisNeuron);
|
||||
|
@ -281,11 +282,11 @@ float RandomFloat(int min, int max)
|
|||
{
|
||||
public:
|
||||
Input();
|
||||
void SetValue(int, float);
|
||||
void SetValue(float, int);
|
||||
};
|
||||
|
||||
|
||||
Input::Input() : Layer() {}
|
||||
void Input::SetValue(int index, float value)
|
||||
void Input::SetValue(float value, int index = 0)
|
||||
{
|
||||
if(index >= this -> neuronSize || index < 0)
|
||||
return;
|
||||
|
@ -299,9 +300,9 @@ float RandomFloat(int min, int max)
|
|||
Output();
|
||||
float GetValue(int);
|
||||
};
|
||||
|
||||
|
||||
Output::Output() : Layer() {}
|
||||
float Output::GetValue(int index)
|
||||
float Output::GetValue(int index = 0)
|
||||
{
|
||||
float result = 0.0;
|
||||
|
||||
|
@ -333,9 +334,10 @@ float RandomFloat(int min, int max)
|
|||
bool SetOutputNeurons(int);
|
||||
bool ConnectLayers();
|
||||
float GetOutput(int);
|
||||
void SetInput(int, float);
|
||||
float GetScore(float, int);
|
||||
void SetInput(float, int);
|
||||
};
|
||||
|
||||
|
||||
NeuralNetwork::NeuralNetwork()
|
||||
{
|
||||
hiddenSize = 0;
|
||||
|
@ -343,7 +345,7 @@ float RandomFloat(int min, int max)
|
|||
hidden = NULL;
|
||||
output = NULL;
|
||||
}
|
||||
|
||||
|
||||
NeuralNetwork::NeuralNetwork(int hiddenSize)
|
||||
{
|
||||
this -> hiddenSize = hiddenSize;
|
||||
|
@ -351,7 +353,7 @@ float RandomFloat(int min, int max)
|
|||
hidden = new Layer(hiddenSize);
|
||||
output = new Output();
|
||||
}
|
||||
|
||||
|
||||
NeuralNetwork::~NeuralNetwork()
|
||||
{
|
||||
if(input) delete input;
|
||||
|
@ -374,7 +376,6 @@ float RandomFloat(int min, int max)
|
|||
(hidden + i) -> Mutate();
|
||||
|
||||
output -> Mutate();
|
||||
|
||||
}
|
||||
|
||||
void NeuralNetwork::RandomizeValues()
|
||||
|
@ -406,73 +407,199 @@ float RandomFloat(int min, int max)
|
|||
{
|
||||
if(!hidden -> ConnectPrevious(input))
|
||||
return false;
|
||||
|
||||
|
||||
for (int i = 1; i < hiddenSize; i++)
|
||||
if(!(hidden + i) -> ConnectPrevious((hidden + i - 1)))
|
||||
return false;
|
||||
|
||||
if(output -> ConnectPrevious((hidden + hiddenSize - 1)))
|
||||
if(!output -> ConnectPrevious((hidden + hiddenSize - 1)))
|
||||
return false;
|
||||
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
float NeuralNetwork::GetOutput(int index)
|
||||
|
||||
float NeuralNetwork::GetOutput(int index = 0)
|
||||
{
|
||||
return output -> GetValue(index);
|
||||
}
|
||||
|
||||
void NeuralNetwork::SetInput(int index, float value)
|
||||
|
||||
float NeuralNetwork::GetScore(float target, int index = 0)
|
||||
{
|
||||
input -> SetValue(index, value);
|
||||
float result = GetOutput(index) - target;
|
||||
return result < 0.0 ? -result : result;
|
||||
}
|
||||
|
||||
void NeuralNetwork::SetInput(float value, int index = 0)
|
||||
{
|
||||
input -> SetValue(value, index);
|
||||
}
|
||||
#pragma endregion
|
||||
#pragma region Generation
|
||||
class Generation
|
||||
{
|
||||
private:
|
||||
NeuralNetwork *networks;
|
||||
int size;
|
||||
int step;
|
||||
float target;
|
||||
void SwapNetworks(NeuralNetwork *, NeuralNetwork *);
|
||||
NeuralNetwork *_CreateNetworks(int, int);
|
||||
public:
|
||||
Generation();
|
||||
Generation(int, int);
|
||||
~Generation();
|
||||
void Randomize();
|
||||
void Fire();
|
||||
void SortByScore(int);
|
||||
void DisplayScores(int);
|
||||
void SetTarget(float);
|
||||
void SetInput(float, int);
|
||||
bool CreateNetworks(int, int);
|
||||
bool ConnectNetworks();
|
||||
bool SetInputNeurons(int);
|
||||
bool SetHiddenNeurons(int, int);
|
||||
bool SetOutputNeurons(int);
|
||||
};
|
||||
|
||||
Generation::Generation()
|
||||
{
|
||||
step = 0;
|
||||
networks = NULL;
|
||||
size = 0;
|
||||
target = 0.0;
|
||||
}
|
||||
|
||||
Generation::Generation(int size, int hiddenSizes)
|
||||
{
|
||||
step = 0;
|
||||
target = 0.0;
|
||||
this -> size = size;
|
||||
networks = _CreateNetworks(size, hiddenSizes);
|
||||
}
|
||||
|
||||
Generation::~Generation()
|
||||
{
|
||||
if(networks) delete networks;
|
||||
}
|
||||
|
||||
NeuralNetwork *Generation::_CreateNetworks(int size, int hiddenSizes)
|
||||
{
|
||||
NeuralNetwork *newNetworks = NULL;
|
||||
newNetworks = (NeuralNetwork *) new char[sizeof(NeuralNetwork) * size];
|
||||
|
||||
if(newNetworks)
|
||||
for (int i = 0; i < size; i++)
|
||||
*(newNetworks + i) = NeuralNetwork(hiddenSizes);
|
||||
|
||||
return newNetworks;
|
||||
}
|
||||
|
||||
void Generation::Randomize()
|
||||
{
|
||||
for (int i = 0; i < this -> size; i++)
|
||||
(networks + i) -> RandomizeValues();
|
||||
}
|
||||
|
||||
void Generation::Fire()
|
||||
{
|
||||
for (int i = 0; i < this -> size; i++)
|
||||
(networks + i) -> FireNetwork();
|
||||
}
|
||||
|
||||
void Generation::SwapNetworks(NeuralNetwork *first, NeuralNetwork *second)
|
||||
{
|
||||
NeuralNetwork temp;
|
||||
temp = *first;
|
||||
*first = *second;
|
||||
*second = temp;
|
||||
}
|
||||
|
||||
void Generation::DisplayScores(int index = 0)
|
||||
{
|
||||
std::cout << "----Scores----\n";
|
||||
for (int i = 0; i < this -> size; i++)
|
||||
std::cout << i << " -> " << (networks + i) -> GetScore(target, index) << "\n";
|
||||
}
|
||||
|
||||
void Generation::SortByScore(int index = 0)
|
||||
{
|
||||
for (int i = 0; i < size - 1; i++)
|
||||
for (int j = i + 1; j < size; j++)
|
||||
if((networks + i) -> GetScore(target, index) < (networks + j) -> GetScore(target, index))
|
||||
SwapNetworks((networks + i), (networks + j));
|
||||
}
|
||||
|
||||
void Generation::SetTarget(float target)
|
||||
{
|
||||
this -> target = target;
|
||||
}
|
||||
|
||||
void Generation::SetInput(float value, int index = 0)
|
||||
{
|
||||
for (int i = 0; i < this -> size; i++)
|
||||
(networks + i) -> SetInput(value, index);
|
||||
}
|
||||
|
||||
bool Generation::CreateNetworks(int size, int hiddenSizes)
|
||||
{
|
||||
if((networks = _CreateNetworks(size, hiddenSizes)))
|
||||
this -> size = size;
|
||||
return networks;
|
||||
}
|
||||
|
||||
bool Generation::ConnectNetworks()
|
||||
{
|
||||
for (int i = 0; i < this -> size; i++)
|
||||
if(!(networks + i) -> ConnectLayers())
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Generation::SetInputNeurons(int size)
|
||||
{
|
||||
for (int i = 0; i < this -> size; i++)
|
||||
if(!(networks + i) -> SetInputNeurons(size))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Generation::SetHiddenNeurons(int index, int size)
|
||||
{
|
||||
for (int i = 0; i < this -> size; i++)
|
||||
if(!(networks + i) -> SetHiddenNeurons(index, size))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Generation::SetOutputNeurons(int size)
|
||||
{
|
||||
for (int i = 0; i < this -> size; i++)
|
||||
if(!(networks + i) -> SetOutputNeurons(size))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
#pragma endregion
|
||||
|
||||
int main(int argc, char const *argv[])
|
||||
{
|
||||
NeuralNetwork network(3);
|
||||
Generation generation(50, 3);
|
||||
std::cout << "1 - " << generation.SetInputNeurons(1) << "\n";
|
||||
std::cout << "2 - " << generation.SetHiddenNeurons(0, 2) << "\n";
|
||||
std::cout << "3 - " << generation.SetHiddenNeurons(1, 3) << "\n";
|
||||
std::cout << "4 - " << generation.SetHiddenNeurons(2, 2) << "\n";
|
||||
std::cout << "5 - " << generation.SetOutputNeurons(1) << "\n";
|
||||
std::cout << "6 - " << generation.ConnectNetworks() << "\n";
|
||||
|
||||
#pragma region Initialization
|
||||
network.SetInputNeurons(1);
|
||||
network.SetHiddenNeurons(0, 2);
|
||||
network.SetHiddenNeurons(1, 3);
|
||||
network.SetHiddenNeurons(2, 2);
|
||||
network.SetOutputNeurons(1);
|
||||
// generation.SetTarget(12.30);
|
||||
|
||||
network.ConnectLayers();
|
||||
#pragma endregion
|
||||
generation.DisplayScores();
|
||||
generation.SortByScore();
|
||||
|
||||
#pragma region Fixed Bias&Weight
|
||||
network.SetInput(0, 1);
|
||||
network.FireNetwork();
|
||||
std::cout << "Result = " << network.GetOutput(0) << "\n";
|
||||
generation.Randomize();
|
||||
generation.Fire();
|
||||
generation.DisplayScores();
|
||||
|
||||
network.SetInput(0, 2);
|
||||
network.FireNetwork();
|
||||
std::cout << "Result = " << network.GetOutput(0) << "\n";
|
||||
|
||||
network.SetInput(0, 3);
|
||||
network.FireNetwork();
|
||||
std::cout << "Result = " << network.GetOutput(0) << "\n";
|
||||
#pragma endregion
|
||||
|
||||
#pragma region Randomized Bias&Weight
|
||||
network.RandomizeValues();
|
||||
std::cout << "Randomize Called!" << "\n";
|
||||
network.FireNetwork();
|
||||
std::cout << "Result = " << network.GetOutput(0) << "\n";
|
||||
|
||||
network.MutateNetwork();
|
||||
std::cout << "Mutate Called!" << "\n";
|
||||
network.FireNetwork();
|
||||
std::cout << "Result = " << network.GetOutput(0) << "\n";
|
||||
|
||||
network.MutateNetwork();
|
||||
std::cout << "Mutate Called!" << "\n";
|
||||
network.FireNetwork();
|
||||
std::cout << "Result = " << network.GetOutput(0) << "\n";
|
||||
#pragma endregion
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue