#include #include #include float RandomFloat(int min, int max) { float result; int value; static unsigned long int counter = 0; srand(time(0) + counter++ * 50); value = (rand() % ((max - min) * 100)); result = (float)value / 100.0 + (float)min; std::clog << "Function RandomFloat: Between " << min << " and " << max << " returned value is " << result << "\n"; return result; } #pragma region Sinaps class Sinaps { private: float weight; // Ağırlık float value; // Değer float bias; // Öteleme public: Sinaps(); ~Sinaps(); Sinaps(float, float, float); // Kaydedilen değerleri yeniden yazabilmek için void SetSinaps(float, float, float); // Sonradan tamamen değiştirebilmek için void SetWeight(float); void SetValue(float); void SetBias(float); float Fire(); }; Sinaps::Sinaps() { weight = value = bias = 0.0; } Sinaps::~Sinaps() { std::clog << "Delete Sinaps: Weight = " << weight << " Value = " << value << " Bias = " << bias << "\n"; } Sinaps::Sinaps(float weight, float value, float bias) { this -> weight = weight; this -> value = value; this -> bias = bias; std::clog << "Create Sinaps: Weight = " << weight << " Value = " << value << " Bias = " << bias << "\n"; } void Sinaps::SetSinaps(float weight, float value, float bias) { this -> weight = weight; this -> value = value; this -> bias = bias; std::clog << "Set Sinaps: Weight = " << weight << " Value = " << value << " Bias = " << bias << "\n"; } void Sinaps::SetWeight(float weight) { std::clog << "Set Sinaps Weight: " << weight << "\n"; this -> weight = weight; } void Sinaps::SetValue(float value) { std::clog << "Set Sinaps Value: " << value << "\n"; this -> value = value; } void Sinaps::SetBias(float bias) { std::clog << "Set Sinaps Bias: " << bias << "\n"; this -> bias = bias; } float Sinaps::Fire() { float result = weight * value + bias; std::clog << "Return Sinaps Fire: " << weight << " * " << value << " + " << bias << " = " << result << "\n"; return result; } #pragma endregion #pragma region Noron class Noron { private: Sinaps *forwards; Sinaps *incoming; int forwardsCount; int incomingCount; public: Noron(); ~Noron(); bool SetForwards(Sinaps *, int); bool SetIncoming(Sinaps *, int); float GetStatus(); }; Noron::Noron() { forwards = incoming = NULL; forwardsCount = incomingCount = 0; std::clog << "Create Noron: NULL" << "\n"; } Noron::~Noron() { delete forwards; delete incoming; } bool Noron::SetForwards(Sinaps *newForwards, int size) { forwards = new Sinaps[size]; if(!forwards) { std::clog << "Set Forwards: Memory Couldn't Allocated!" << "\n"; return false; } for (int i = 0; i < size; i++) *(forwards+i) = *(newForwards+i); forwardsCount = size; std::clog << "Set Forwards: Successfull!" << "\n"; return true; } bool Noron::SetIncoming(Sinaps *newIncoming, int size) { incoming = new Sinaps[size]; if(!incoming) { std::clog << "Set Incoming: Memory Couldn't Allocated!" << "\n"; return false; } for (int i = 0; i < size; i++) *(incoming+i) = *(newIncoming+i); incomingCount = size; std::clog << "Set Incoming: Successfull!" << "\n"; return true; } float Noron::GetStatus() { float toplam = 0.0; for (int i = 0; i < incomingCount; i++) toplam += (incoming + i) -> Fire(); for (int i = 0; i < forwardsCount; i++) (forwards + i) -> SetValue(toplam); std::clog << "Get Noron Status: Sum = " << toplam << "\n"; return toplam; } #pragma endregion #pragma region Katman class Katman { protected: Noron *neurons; Katman *forward; Sinaps *layerSinapses; int size; Sinaps *CreateSinapsSet(int size); public: Katman(); Katman(int); ~Katman(); void FireLayer(); void RandomizeSinapsValues(); bool SetForward(Katman *); bool SetIncoming(Sinaps *sinapsSet, int backwardsNeuronCount); bool SetNoron(Noron *, int); bool CreateNoron(int); int GetSize(); }; Katman::Katman() { neurons = NULL; this -> size = 0; std::clog << "Create Layer: NULL" << "\n"; } Katman::Katman(int size) { Katman(); if(!CreateNoron(size)) { std::clog << "Error Create Layer: Neurons Couldn't Created!" << "\n"; std::cout << "Katman Oluşturulamadı!"; return; } std::clog << "Create Layer: " << size << " Neurons Has Been Created!" << "\n"; this -> size = size; } Katman::~Katman() { delete neurons; } Sinaps *Katman::CreateSinapsSet(int size) { Sinaps* sinapses = new Sinaps[size]; if(sinapses) std::clog << "Create Sinaps Set: " << size << " Sinapses Has Been Created!" << "\n"; else std::clog << "Error Create Sinaps Set!" << "\n"; return sinapses; } void Katman::RandomizeSinapsValues() { if(!forward) return; float weight; float value; float bias; int sinapsCount = size * (forward -> GetSize()); for (int i = 0; i < sinapsCount; i++) { weight = RandomFloat(-1, 1); value = RandomFloat(-1, 1); bias = RandomFloat(-1, 1); (layerSinapses + i) -> SetSinaps(weight, value, bias); std::clog << "Call RandomizeSinapsValues: SetSinaps Called With Values of SetSinaps(" << weight << ", " << value << ", " << bias << ")" << "\n"; } } void Katman::FireLayer() { std::clog << "Call FireLayer: Number of " << size << " Neurons' GetStatus is Being Called!" << "\n"; for (int i = 0; i < size; i++) std::clog << i << ". Neuron Status: " << (neurons + i) -> GetStatus() << "\n"; } bool Katman::SetForward(Katman *forward) { Sinaps *sinapses = NULL; // Pointer to store all created sinapses Sinaps *newSinapses = NULL; // Temporary Pointer for creating each neurons' s1inapses int forwardSize; int sinapsesIndex = 0; delete layerSinapses; this -> forward = forward; if(!forward) { std::clog << "Call SetForward: Forward is NULL" << "\n"; return true; } forwardSize = forward -> GetSize(); std::clog << "Call SetForward: Creating Sinaps Set with Number of " << (size * forwardSize) << "\n"; sinapses = new Sinaps[size * forwardSize]; if(!sinapses) { std::clog << "Error Call SetForward: Couldn't Allocate Memory for Sinapses!" << "\n"; return false; } std::clog << "Call SetForward: Sinapses Set Created!" << "\n"; // Set Forwards of each neuron in the Layer for (int thisCounter = 0; thisCounter < size; thisCounter++) { newSinapses = CreateSinapsSet(forwardSize); if(!newSinapses) { std::clog << "Call SetForward -> CreateSinapsSet: Couldn't Allocate Memory for Sinapses!" << "\n"; return false; } std::clog << "Call SetForward -> CreateSinapsSet: Sinapses Set Created!" << "\n"; std::clog << "Call SetForward -> SetForwards: " << (neurons + thisCounter) -> SetForwards(newSinapses, forwardSize) << "\n";; // Add each sinaps to the array for (int forwardCounter = 0; forwardCounter < forwardSize; forwardCounter++) *(sinapses + (sinapsesIndex++)) = *(newSinapses + forwardCounter); std::clog << "Call SetForward: Sinapses Are Added to the Array!" << "\n"; } layerSinapses = sinapses; std::clog << "Call SetForward: Sinaps Array Has Been Set to the Class' Pointer!" << "\n"; // Send the sinapses to the forward layer return forward -> SetIncoming(sinapses, size); } bool Katman::SetIncoming(Sinaps *sinapsSet, int backwardsNeuronCount) { Sinaps *sinapses = NULL; std::clog << "Call SetIncoming: Creating Sinaps Set with Number of " << backwardsNeuronCount << "\n"; sinapses = new Sinaps[backwardsNeuronCount]; if(!sinapses) { std::clog << "Error Call SetIncoming: Couldn't Allocate Memory for Sinapses!" << "\n"; return false; } std::clog << "Call SetIncoming: Sinapses Set Created!" << "\n"; for (int thisCounter = 0; thisCounter < size; thisCounter++) { std::clog << "Call SetIncoming: Sinapses Are Being Added to the Array!" << "\n"; // Add each sinaps to the array for (int incomingCounter = 0; incomingCounter < backwardsNeuronCount; incomingCounter++) *(sinapses + (size * thisCounter + incomingCounter)) = *(sinapsSet + incomingCounter); std::clog << "Call SetIncoming -> Neuron SetIncoming: " << (neurons + thisCounter) -> SetIncoming(sinapses, backwardsNeuronCount) << "\n"; } return true; } bool Katman::SetNoron(Noron *newNeurons, int size) { std::clog << "Call SetNoron: Creating Neurons with Number of " << size << "\n"; neurons = new Noron[size]; if(!neurons) { std::clog << "Error Call SetNoron: Creating Neurons Failed!" << "\n"; return false; } std::clog << "Call SetNoron: Neurons Created Successfully!" << "\n"; std::clog << "Call SetNoron: Setting Neurons to the Class' Neurons!" << "\n"; for (int i = 0; i < size; i++) *(neurons+i) = *(newNeurons+i); std::clog << "Call SetNoron: Neurons are Set Successfully!" << "\n"; this -> size = size; return true; } bool Katman::CreateNoron(int size) { std::clog << "Call CreateNoron: Creating Neurons with Number of " << size << "\n"; neurons = new Noron[size]; if(!neurons) { std::clog << "Error Call CreateNoron: Creating Neurons Failed!" << "\n"; return false; } std::clog << "Call CreateNoron: Neurons Created Successfully!" << "\n"; std::clog << "Call CreateNoron: Neurons are Set Successfully!" << "\n"; this -> size = size; return true; } int Katman::GetSize() { return size; } #pragma endregion #pragma region Girdi-Cikti #pragma region Girdi class Girdi : public Katman { public: Girdi(); Girdi(int); void SetValue(int, float); }; Girdi::Girdi() : Katman() {} Girdi::Girdi(int size) : Katman(size) {} void Girdi::SetValue(int index, float value) { Sinaps *editedSinaps = NULL; int forwardNeuronCount = forward -> GetSize(); std::clog << "Call SetValue: Index of " << index << " Neuron's Sinapses Values are Getting Set to Value of " << value << "\n"; for (int i = 0; i < forwardNeuronCount; i++) { std::clog << "Call SetValue -> Sinaps SetValue: Index of " << index << " Neuron's " << i << " Sinaps Value is Getting Set to Value of " << value << "\n"; editedSinaps = (layerSinapses + index * forwardNeuronCount + i); editedSinaps -> SetValue(value); std::clog << "Call SetValue -> Sinaps SetValue: Successfull" << "\n"; } std::clog << "Call SetValue: Successfull" << "\n"; } #pragma endregion #pragma region Cikti class Cikti : public Katman { public: Cikti(); Cikti(int); float GetValue(int); }; Cikti::Cikti() : Katman() {} Cikti::Cikti(int size) : Katman(size) {} float Cikti::GetValue(int index) { float result = (neurons + index) -> GetStatus(); std::clog << "Call GetValue: " << result << "\n"; return result; } #pragma endregion #pragma endregion #pragma region NeuralNetwork class NeuralNetwork { private: Girdi *input; Katman *hiddenLayers; Cikti *output; int hiddenSize; public: NeuralNetwork(); NeuralNetwork(int); ~NeuralNetwork(); void SetInput(int, float); void RandomizeNetworkValues(); void FireNetwork(); bool SetInputNeurons(int); bool SetHiddenLayerNeurons(int, int); bool SetOutputNeurons(int); bool ConnectLayers(); float GetOutputValue(int); }; NeuralNetwork::NeuralNetwork() { std::clog << "Create NeuralNetwork: NULL" << "\n"; hiddenSize = 0; input = NULL; hiddenLayers = NULL; output = NULL; } NeuralNetwork::NeuralNetwork(int hiddenSize) { input = new Girdi(); hiddenLayers = new Katman[hiddenSize]; output = new Cikti(); std::clog << "Create NeuralNetwork: New Neural Network Created with " << hiddenSize << " Layers!" << "\n"; if(!input) { std::clog << "Error Create NeuralNetwork: Memory Couldn't Allocated for Input Layer!" << "\n"; std::cout << "Girdi Katmani Olusturulamadi!" << "\n"; } if(!hiddenLayers) { std::clog << "Error Create NeuralNetwork: Memory Couldn't Allocated for Hidden Layers!" << "\n"; std::cout << "Ara Katmanlar Olusturulamadi!" << "\n"; } if(!output) { std::clog << "Error Create NeuralNetwork: Memory Couldn't Allocated for Output Layer!" << "\n"; std::cout << "Cikti Katmani Olusturulamadi!" << "\n"; } if(!input || !hiddenLayers || !output) return; std::clog << "Create NeuralNetwork: Succesfull!" << "\n"; this -> hiddenSize = hiddenSize; } NeuralNetwork::~NeuralNetwork() { delete input; delete hiddenLayers; delete output; } bool NeuralNetwork::SetHiddenLayerNeurons(int index, int size) { std::clog << "Call SetHiddenLayerNeurons: Size of " << size << " at Index of " << index << "\n"; std::clog << "Call SetHiddenLayerNeurons: Creating " << size << " Neurons!" << "\n"; Noron *neurons = new Noron[size]; if(!neurons) { std::clog << "Error Call SetHiddenLayerNeurons: Couldn't Allocate Memory for Neurons!" << "\n"; return false; } std::clog << "Call SetHiddenLayerNeurons: Neurons Are Created!" << "\n"; return (hiddenLayers + index) -> SetNoron(neurons, size); } bool NeuralNetwork::SetInputNeurons(int size) { std::clog << "Call SetInputNeurons: Size of " << size << "\n"; std::clog << "Call SetInputNeurons: Creating " << size << " Neurons!" << "\n"; Noron *neurons = new Noron[size]; if(!neurons) { std::clog << "Error Call SetInputNeurons: Couldn't Allocate Memory for Neurons!" << "\n"; return false; } std::clog << "Call SetInputNeurons: Neurons Are Created!" << "\n"; return output -> SetNoron(neurons, size); } bool NeuralNetwork::SetOutputNeurons(int size) { std::clog << "Call SetInputNeurons: Size of " << size << "\n"; std::clog << "Call SetInputNeurons: Creating " << size << " Neurons!" << "\n"; Noron *neurons = new Noron[size]; if(!neurons) { std::clog << "Error Call SetInputNeurons: Couldn't Allocate Memory for Neurons!" << "\n"; return false; } std::clog << "Call SetInputNeurons: Neurons Are Created!" << "\n"; return input -> SetNoron(neurons, size); } bool NeuralNetwork::ConnectLayers() { if(!input -> SetForward(hiddenLayers)) { std::clog << "Call ConnectLayers: Input Couldn't Set to Forward!" << "\n"; return false; } std::clog << "Call ConnectLayers: Input is Set to Forward Successfully!" << "\n"; for (int i = 0; i < hiddenSize - 1; i++) if(!(hiddenLayers + i) -> SetForward(hiddenLayers + i + 1)) { std::clog << "Call ConnectLayers: Hidden Layer " << i << " Couldn't Set to Forward!" << "\n"; return false; } std::clog << "Call ConnectLayers: Hidden Layers are Set to Forward Successfully!" << "\n"; if(!(hiddenLayers + hiddenSize - 1) -> SetForward(output)) { std::clog << "Call ConnectLayers: Output Couldn't Set to Forward!" << "\n"; return false; } std::clog << "Call ConnectLayers: Output is Set to Forward Successfully!" << "\n"; return output -> SetForward(NULL); } void NeuralNetwork::FireNetwork() { // input -> FireLayer(); // std::clog << "Call FireNetwork: Input Fired!" << "\n"; for (int i = 0; i < hiddenSize; i++) { (hiddenLayers + i) -> FireLayer(); std::clog << "Call FireNetwork: Hidden Layer " << i << " Fired!" << "\n"; } output -> FireLayer(); std::clog << "Call FireNetwork: Output Fired!" << "\n"; } void NeuralNetwork::SetInput(int index, float value) { if(!input) { std::clog << "Call SetInput: There's no Input Layer Set!" << "\n"; return; } std::clog << "Call SetInput -> Input SetValue: SetValue(" << index << ", " << value << ")!" << "\n"; input -> SetValue(index, value); } void NeuralNetwork::RandomizeNetworkValues() { std::clog << "Call RandomizeNetworkValues: Input Sinapses Are Getting Randomized!" << "\n"; input -> RandomizeSinapsValues(); for (int i = 0; i < hiddenSize; i++) { std::clog << "Call RandomizeNetworkValues: Hidden Layer " << i << " Sinapses Are Getting Randomized!" << "\n"; (hiddenLayers + i) -> RandomizeSinapsValues(); } std::clog << "Call RandomizeNetworkValues: Output Sinapses Are Getting Randomized!" << "\n"; output -> RandomizeSinapsValues(); } float NeuralNetwork::GetOutputValue(int index) { float result = output -> GetValue(index); std::clog << "Call GetOutputValue: " << result << "\n"; return result; } #pragma endregion int main(int argc, char const *argv[]) { NeuralNetwork network(3); network.SetInputNeurons(1); network.SetHiddenLayerNeurons(0, 2); network.SetHiddenLayerNeurons(1, 3); network.SetHiddenLayerNeurons(2, 2); network.SetOutputNeurons(1); network.ConnectLayers(); network.RandomizeNetworkValues(); network.SetInput(0, 1); std::cout << "m1\n"; network.FireNetwork(); std::cout << "m2\n"; std::cout << network.GetOutputValue(0) << "\n"; std::cout << "m3\n"; return 0; }