diff --git a/Engine.Core/Primitives/Quaternion.cs b/Engine.Core/Primitives/Quaternion.cs
new file mode 100644
index 0000000..383a6bf
--- /dev/null
+++ b/Engine.Core/Primitives/Quaternion.cs
@@ -0,0 +1,372 @@
+using System;
+
+namespace Syntriax.Engine.Core;
+
+///
+/// Represents a 3D space rotation.
+///
+/// X(i) position of the .
+/// Y(j) position of the .
+/// Z(k) position of the .
+/// W(a) position of the .
+///
+/// Initializes a new instance of the struct with the specified positions.
+///
+[System.Diagnostics.DebuggerDisplay("{ToString(),nq}, Length: {Magnitude}, LengthSquared: {MagnitudeSquared}, Normalized: {Normalized.ToString(),nq}")]
+public readonly struct Quaternion(float x, float y, float z, float w)
+{
+ ///
+ /// The X(i) imaginary of the .
+ ///
+ public readonly float X = x;
+
+ ///
+ /// The Y(j) imaginary of the .
+ ///
+ public readonly float Y = y;
+
+ ///
+ /// The Z(k) imaginary of the .
+ ///
+ public readonly float Z = z;
+
+ ///
+ /// The W(a) scalar of the .
+ ///
+ public readonly float W = w;
+
+ ///
+ /// The magnitude (length) of the .
+ ///
+ public float Magnitude => Length(this);
+
+ ///
+ /// The squared magnitude (length) of the .
+ ///
+ public float MagnitudeSquared => LengthSquared(this);
+
+ ///
+ /// The normalized form of the (a with the same direction and a magnitude of 1).
+ ///
+ public Quaternion Normalized => Normalize(this);
+
+ ///
+ /// Represents the with no rotation.
+ ///
+ public readonly static Quaternion Zero = new(0f, 0f, 0f, 0f);
+
+ ///
+ /// Represents the identity .
+ ///
+ public readonly static Quaternion Identity = new(0f, 0f, 0f, 1f);
+
+ public static Quaternion operator -(Quaternion quaternion) => new(-quaternion.X, -quaternion.Y, -quaternion.Z, quaternion.W);
+ public static Quaternion operator +(Quaternion left, Quaternion right) => new(left.X + right.X, left.Y + right.Y, left.Z + right.Z, left.W + right.W);
+ public static Quaternion operator -(Quaternion left, Quaternion right) => new(left.X - right.X, left.Y - right.Y, left.Z - right.Z, left.W - right.W);
+ public static Quaternion operator *(Quaternion quaternion, float value) => new(quaternion.X * value, quaternion.Y * value, quaternion.Z * value, quaternion.W * value);
+ public static Quaternion operator *(float value, Quaternion quaternion) => new(quaternion.X * value, quaternion.Y * value, quaternion.Z * value, quaternion.W * value);
+ public static Quaternion operator *(Quaternion left, Quaternion right)
+ => new(
+ left.W * right.X + left.X * right.W + left.Y * right.Z - left.Z * right.Y,
+ left.W * right.Y + left.Y * right.W + left.Z * right.X - left.X * right.Z,
+ left.W * right.Z + left.Z * right.W + left.X * right.Y - left.Y * right.X,
+ left.W * right.W - left.X * right.X - left.Y * right.Y - left.Z * right.Z
+ );
+ public static Quaternion operator /(Quaternion quaternion, float value) => new(quaternion.X / value, quaternion.Y / value, quaternion.Z / value, quaternion.W / value);
+ public static bool operator ==(Quaternion left, Quaternion right) => left.X == right.X && left.Y == right.Y && left.Z == right.Z && left.W == right.W;
+ public static bool operator !=(Quaternion left, Quaternion right) => left.X != right.X || left.Y != right.Y || left.Z != right.Z || left.W != right.W;
+
+ public static implicit operator Quaternion(System.Numerics.Quaternion quaternion) => new(quaternion.X, quaternion.Y, quaternion.Z, quaternion.W);
+ public static implicit operator System.Numerics.Quaternion(Quaternion quaternion) => new(quaternion.X, quaternion.Y, quaternion.Z, quaternion.W);
+
+ ///
+ /// Calculates the length of the .
+ ///
+ /// The .
+ /// The length of the .
+ public static float Length(Quaternion quaternion) => Math.Sqrt(LengthSquared(quaternion));
+
+ ///
+ /// Calculates the squared length of the .
+ ///
+ /// The .
+ /// The squared length of the .
+ public static float LengthSquared(Quaternion quaternion) => quaternion.X * quaternion.X + quaternion.Y * quaternion.Y + quaternion.Z * quaternion.Z + quaternion.Z * quaternion.Z + quaternion.W * quaternion.W;
+
+ ///
+ /// Adds two s.
+ ///
+ /// The first .
+ /// The second .
+ /// The sum of the two s.
+ public static Quaternion Add(Quaternion left, Quaternion right) => left + right;
+
+ ///
+ /// Subtracts one from another.
+ ///
+ /// The to subtract from.
+ /// The to subtract.
+ /// The result of subtracting the second from the first.
+ public static Quaternion Subtract(Quaternion left, Quaternion right) => left - right;
+
+ ///
+ /// Multiplies a by a scalar value.
+ ///
+ /// The .
+ /// The scalar value.
+ /// The result of multiplying the by the scalar value.
+ public static Quaternion Multiply(Quaternion quaternion, float value) => quaternion * value;
+
+ ///
+ /// Divides a by a scalar value.
+ ///
+ /// The .
+ /// The scalar value.
+ /// The result of dividing the by the scalar value.
+ public static Quaternion Divide(Quaternion quaternion, float value) => quaternion / value;
+
+ ///
+ /// Normalizes the (creates a unit with the same direction).
+ ///
+ /// The to normalize.
+ /// The normalized .
+ public static Quaternion Normalize(Quaternion quaternion) => quaternion / Length(quaternion);
+
+ ///
+ /// Inverts the direction of the .
+ ///
+ /// The .
+ /// The inverted .
+ public static Quaternion Invert(Quaternion quaternion) => Conjugate(quaternion) / LengthSquared(quaternion);
+
+ ///
+ /// Conjugate of the .
+ ///
+ /// The .
+ /// The inverted .
+ public static Quaternion Conjugate(Quaternion quaternion) => -quaternion;
+
+ ///
+ /// Rotates a by applying the provided .
+ ///
+ /// The to be rotated.
+ /// The to used for applying rotation.
+ /// The rotated .
+ public static Vector3D RotateVector(Vector3D vector, Quaternion quaternion)
+ {
+ Quaternion rotation = quaternion * new Quaternion(vector.X, vector.Y, vector.Z, 0) * Invert(quaternion);
+ return new(rotation.X, rotation.Y, rotation.Z);
+ }
+
+ ///
+ /// Performs spherical linear interpolation between two s.
+ ///
+ /// The starting (t = 0).
+ /// The target (t = 1).
+ /// The interpolation parameter.
+ /// The interpolated .
+ public static Quaternion SLerp(Quaternion from, Quaternion to, float t)
+ {
+ float dot = Dot(from, to);
+
+ if (dot < 0.0f)
+ {
+ from = new Quaternion(-from.X, -from.Y, -from.Z, -from.W);
+ dot = -dot;
+ }
+
+ if (dot > 0.9995f)
+ return Lerp(from, to, t);
+
+ float angle = MathF.Acos(dot);
+ float sinAngle = MathF.Sin(angle);
+
+ float fromWeight = MathF.Sin((1f - t) * angle) / sinAngle;
+ float toWeight = MathF.Sin(t * angle) / sinAngle;
+
+ return from * fromWeight + to * toWeight;
+ }
+
+ ///
+ /// Performs linear interpolation between two s.
+ ///
+ /// The starting (t = 0).
+ /// The target (t = 1).
+ /// The interpolation parameter.
+ /// The interpolated .
+ public static Quaternion Lerp(Quaternion from, Quaternion to, float t) => Normalize(new(from.X.Lerp(to.X, t), from.W.Lerp(to.W, t), from.Z.Lerp(to.Z, t), from.W.Lerp(to.W, t)));
+
+ ///
+ /// Calculates the dot product of two s.
+ ///
+ /// The first .
+ /// The second .
+ /// The dot product of the two s.
+ public static float Dot(Quaternion left, Quaternion right) => left.X * right.X + left.Y * right.Y + left.Z * right.Z + left.W * right.W;
+
+ ///
+ /// Calculates the from given axis and angle.
+ ///
+ /// The axis of the rotation in .
+ /// The angle in radians.
+ /// The rotation calculated by the given parameters.
+ public static Quaternion FromAxisAngle(Vector3D axis, float angle)
+ {
+ float halfAngle = angle * .5f;
+ float sinHalf = MathF.Sin(halfAngle);
+ return new Quaternion(axis.X * sinHalf, axis.Y * sinHalf, axis.Z * sinHalf, MathF.Cos(halfAngle));
+ }
+
+ ///
+ /// Checks if two s are approximately equal within a specified epsilon range.
+ ///
+ /// The first .
+ /// The second .
+ /// The epsilon range.
+ /// if the s are approximately equal; otherwise, .
+ public static bool ApproximatelyEquals(Quaternion left, Quaternion right, float epsilon = float.Epsilon)
+ => left.X.ApproximatelyEquals(right.X, epsilon) && left.Y.ApproximatelyEquals(right.Y, epsilon) && left.Z.ApproximatelyEquals(right.Z, epsilon) && left.W.ApproximatelyEquals(right.W, epsilon);
+
+ ///
+ /// Converts the to its string representation.
+ ///
+ /// A string representation of the .
+ public override string ToString() => $"{nameof(Quaternion)}({W}, {X}, {Y}, {Z})";
+
+ ///
+ /// Determines whether the specified object is equal to the current .
+ ///
+ /// The object to compare with the current .
+ /// if the specified object is equal to the current ; otherwise, .
+ public override bool Equals(object? obj) => obj is Quaternion objVec && X.Equals(objVec.X) && Y.Equals(objVec.Y) && Z.Equals(objVec.Z) && W.Equals(objVec.W);
+
+ ///
+ /// Generates a hash code for the .
+ ///
+ /// A hash code for the .
+ public override int GetHashCode() => HashCode.Combine(X, Y, Z);
+}
+
+///
+/// Provides extension methods for type.
+///
+public static class QuaternionExtensions
+{
+ ///
+ /// Calculates the length of the .
+ ///
+ /// The .
+ /// The length of the .
+ public static float Length(this Quaternion quaternion) => Quaternion.Length(quaternion);
+
+ ///
+ /// Calculates the squared length of the .
+ ///
+ /// The .
+ /// The squared length of the .
+ public static float LengthSquared(this Quaternion quaternion) => Quaternion.LengthSquared(quaternion);
+
+ ///
+ /// Adds two s.
+ ///
+ /// The first .
+ /// The second .
+ /// The sum of the two s.
+ public static Quaternion Add(this Quaternion left, Quaternion right) => Quaternion.Add(left, right);
+
+ ///
+ /// Subtracts one from another.
+ ///
+ /// The to subtract from.
+ /// The to subtract.
+ /// The result of subtracting the second from the first.
+ public static Quaternion Subtract(this Quaternion left, Quaternion right) => Quaternion.Subtract(left, right);
+
+ ///
+ /// Multiplies a by a scalar value.
+ ///
+ /// The .
+ /// The scalar value.
+ /// The result of multiplying the by the scalar value.
+ public static Quaternion Multiply(this Quaternion quaternion, float value) => Quaternion.Multiply(quaternion, value);
+
+ ///
+ /// Divides a by a scalar value.
+ ///
+ /// The .
+ /// The scalar value.
+ /// The result of dividing the by the scalar value.
+ public static Quaternion Divide(this Quaternion quaternion, float value) => Quaternion.Divide(quaternion, value);
+
+ ///
+ /// Normalizes the (creates a unit with the same direction).
+ ///
+ /// The to normalize.
+ /// The normalized .
+ public static Quaternion Normalize(this Quaternion quaternion) => Quaternion.Normalize(quaternion);
+
+ ///
+ /// Inverts the direction of the .
+ ///
+ /// The .
+ /// The inverted .
+ public static Quaternion Invert(this Quaternion quaternion) => Quaternion.Invert(quaternion);
+
+ ///
+ /// Conjugate of the .
+ ///
+ /// The .
+ /// The inverted .
+ public static Quaternion Conjugate(this Quaternion quaternion) => Quaternion.Conjugate(quaternion);
+
+ ///
+ /// Rotates a by applying the provided .
+ ///
+ /// The to be rotated.
+ /// The to used for applying rotation.
+ /// The rotated .
+ public static Vector3D RotateVector(this Vector3D vector, Quaternion quaternion) => Quaternion.RotateVector(vector, quaternion);
+
+ ///
+ /// Performs spherical linear interpolation between two s.
+ ///
+ /// The starting (t = 0).
+ /// The target (t = 1).
+ /// The interpolation parameter.
+ /// The interpolated .
+ public static Quaternion SLerp(this Quaternion from, Quaternion to, float t) => Quaternion.SLerp(from, to, t);
+
+ ///
+ /// Performs linear interpolation between two s.
+ ///
+ /// The starting (t = 0).
+ /// The target (t = 1).
+ /// The interpolation parameter.
+ /// The interpolated .
+ public static Quaternion Lerp(this Quaternion from, Quaternion to, float t) => Quaternion.Lerp(from, to, t);
+
+ ///
+ /// Calculates the dot product of two s.
+ ///
+ /// The first .
+ /// The second .
+ /// The dot product of the two s.
+ public static float Dot(this Quaternion left, Quaternion right) => Quaternion.Dot(left, right);
+
+ ///
+ /// Calculates the from given axis and angle.
+ ///
+ /// The axis of the rotation in .
+ /// The angle in radians.
+ /// The rotation calculated by the given parameters.
+ public static Quaternion CreateRotationFromAxis(this Vector3D axis, float angle) => Quaternion.FromAxisAngle(axis, angle);
+
+ ///
+ /// Checks if two s are approximately equal within a specified epsilon range.
+ ///
+ /// The first .
+ /// The second .
+ /// The epsilon range.
+ /// if the s are approximately equal; otherwise, .
+ public static bool ApproximatelyEquals(this Quaternion left, Quaternion right, float epsilon = float.Epsilon) => Quaternion.ApproximatelyEquals(left, right, epsilon);
+}