using System;
namespace Engine.Core;
/// 
/// Represents a four-dimensional vector.
/// 
/// X position of the .
/// Y position of the .
/// Z position of the .
/// W position of the .
/// 
/// Initializes a new instance of the  struct with the specified positions.
/// 
[System.Diagnostics.DebuggerDisplay("{ToString(),nq}, Length: {Magnitude}, LengthSquared: {MagnitudeSquared}, Normalized: {Normalized.ToString(),nq}")]
public readonly struct Vector4D(float x, float y, float z, float w) : IEquatable
{
    /// 
    /// The X coordinate of the .
    /// 
    public readonly float X = x;
    /// 
    /// The Y coordinate of the .
    /// 
    public readonly float Y = y;
    /// 
    /// The Z coordinate of the .
    /// 
    public readonly float Z = z;
    /// 
    /// The W coordinate of the .
    /// 
    public readonly float W = w;
    /// 
    /// The magnitude (length) of the .
    /// 
    public float Magnitude => Length(this);
    /// 
    /// The squared magnitude (length) of the .
    /// 
    public float MagnitudeSquared => LengthSquared(this);
    /// 
    /// The normalized form of the  (a  with the same direction and a magnitude of 1).
    /// 
    public Vector4D Normalized => Normalize(this);
    /// 
    /// Represents the zero .
    /// 
    public readonly static Vector4D Zero = new(0f, 0f, 0f, 0f);
    /// 
    /// Represents the one .
    /// 
    public readonly static Vector4D One = new(1f, 1f, 1f, 1f);
    /// 
    /// Represents the unit X .
    /// 
    public readonly static Vector4D UnitX = new(1f, 0f, 0f, 0f);
    /// 
    /// Represents the unit Y .
    /// 
    public readonly static Vector4D UnitY = new(0f, 1f, 0f, 0f);
    /// 
    /// Represents the unit Z .
    /// 
    public readonly static Vector4D UnitZ = new(0f, 0f, 1f, 0f);
    /// 
    /// Represents the unit W .
    /// 
    public readonly static Vector4D UnitW = new(0f, 0f, 0f, 1f);
    public static Vector4D operator -(Vector4D vector) => new(0f - vector.X, 0f - vector.Y, 0f - vector.Z, 0f - vector.W);
    public static Vector4D operator +(Vector4D left, Vector4D right) => new(left.X + right.X, left.Y + right.Y, left.Z + right.Z, left.W + right.W);
    public static Vector4D operator -(Vector4D left, Vector4D right) => new(left.X - right.X, left.Y - right.Y, left.Z - right.Z, left.W - right.W);
    public static Vector4D operator *(Vector4D vector, float value) => new(vector.X * value, vector.Y * value, vector.Z * value, vector.W * value);
    public static Vector4D operator *(float value, Vector4D vector) => new(vector.X * value, vector.Y * value, vector.Z * value, vector.W * value);
    public static Vector4D operator /(Vector4D vector, float value) => new(vector.X / value, vector.Y / value, vector.Z / value, vector.W / value);
    public static bool operator ==(Vector4D left, Vector4D right) => left.X == right.X && left.Y == right.Y && left.Z == right.Z && left.W == right.W;
    public static bool operator !=(Vector4D left, Vector4D right) => left.X != right.X || left.Y != right.Y || left.Z != right.Z || left.W != right.W;
    public static implicit operator System.Numerics.Vector4(Vector4D vector) => new(vector.X, vector.Y, vector.Z, vector.W);
    public static implicit operator Vector4D(System.Numerics.Vector4 vector) => new(vector.X, vector.Y, vector.Z, vector.W);
    /// 
    /// Calculates the length of the .
    /// 
    /// The .
    /// The length of the .
    public static float Length(Vector4D vector) => Math.Sqrt(LengthSquared(vector));
    /// 
    /// Calculates the squared length of the .
    /// 
    /// The .
    /// The squared length of the .
    public static float LengthSquared(Vector4D vector) => vector.X * vector.X + vector.Y * vector.Y + vector.Z * vector.Z + vector.W * vector.W;
    /// 
    /// Calculates the distance between two s.
    /// 
    /// The start .
    /// The end .
    /// The distance between the two s.
    public static float Distance(Vector4D from, Vector4D to) => Length(FromTo(from, to));
    /// 
    /// Inverts the direction of the .
    /// 
    /// The .
    /// The inverted .
    public static Vector4D Invert(Vector4D vector) => -vector;
    /// 
    /// Adds two s.
    /// 
    /// The first .
    /// The second .
    /// The sum of the two s.
    public static Vector4D Add(Vector4D left, Vector4D right) => left + right;
    /// 
    /// Subtracts one  from another.
    /// 
    /// The  to subtract from.
    /// The  to subtract.
    /// The result of subtracting the second  from the first.
    public static Vector4D Subtract(Vector4D left, Vector4D right) => left - right;
    /// 
    /// Multiplies a  by a scalar value.
    /// 
    /// The .
    /// The scalar value.
    /// The result of multiplying the  by the scalar value.
    public static Vector4D Multiply(Vector4D vector, float value) => vector * value;
    /// 
    /// Divides a  by a scalar value.
    /// 
    /// The .
    /// The scalar value.
    /// The result of dividing the  by the scalar value.
    public static Vector4D Divide(Vector4D vector, float value) => vector / value;
    /// 
    /// Calculates the absolute value of each component of the vector.
    /// 
    /// The .
    /// The  with each component's absolute value.
    public static Vector4D Abs(Vector4D vector) => new(Math.Abs(vector.X), Math.Abs(vector.Y), Math.Abs(vector.Z), Math.Abs(vector.W));
    /// 
    /// Normalizes the  (creates a unit  with the same direction).
    /// 
    /// The  to normalize.
    /// The normalized .
    public static Vector4D Normalize(Vector4D vector) => vector / Length(vector);
    /// 
    /// Calculates the  from one point to another.
    /// 
    /// The starting point.
    /// The ending point.
    /// The  from the starting point to the ending point.
    public static Vector4D FromTo(Vector4D from, Vector4D to) => to - from;
    /// 
    /// Scales a  by another  component-wise.
    /// 
    /// The  to scale.
    /// The  containing the scaling factors for each component.
    /// The scaled .
    public static Vector4D Scale(Vector4D vector, Vector4D scale) => new(vector.X * scale.X, vector.Y * scale.Y, vector.Z * scale.Z, vector.W * scale.W);
    /// 
    /// Returns the component-wise minimum of two s.
    /// 
    /// The first .
    /// The second .
    /// The  containing the minimum components from both input s.
    public static Vector4D Min(Vector4D left, Vector4D right) => new((left.X < right.X) ? left.X : right.X, (left.Y < right.Y) ? left.Y : right.Y, (left.Z < right.Z) ? left.Z : right.Z, (left.W < right.W) ? left.W : right.W);
    /// 
    /// Returns the component-wise maximum of two s.
    /// 
    /// The first .
    /// The second .
    /// The  containing the maximum components from both input s.
    public static Vector4D Max(Vector4D left, Vector4D right) => new((left.X > right.X) ? left.X : right.X, (left.Y > right.Y) ? left.Y : right.Y, (left.Z > right.Z) ? left.Z : right.Z, (left.W > right.W) ? left.W : right.W);
    /// 
    /// Clamps each component of a  between the corresponding component of two other s.
    /// 
    /// The  to clamp.
    /// The  representing the minimum values for each component.
    /// The  representing the maximum values for each component.
    /// A  with each component clamped between the corresponding components of the min and max s.
    public static Vector4D Clamp(Vector4D vector, Vector4D min, Vector4D max) => new(Math.Clamp(vector.X, min.X, max.X), Math.Clamp(vector.Y, min.Y, max.Y), Math.Clamp(vector.Z, min.Z, max.Z), Math.Clamp(vector.W, min.W, max.W));
    /// 
    /// Performs linear interpolation between two s.
    /// 
    /// The starting  (t = 0).
    /// The ending  (t = 1).
    /// The interpolation parameter.
    /// The interpolated .
    public static Vector4D Lerp(Vector4D from, Vector4D to, float t) => from + FromTo(from, to) * t;
    /// 
    /// Calculates the dot product of two s.
    /// 
    /// The first .
    /// The second .
    /// The dot product of the two s.
    public static float Dot(Vector4D left, Vector4D right) => left.X * right.X + left.Y * right.Y + left.Z * right.Z + left.W * right.W;
    /// 
    /// Checks if two s are approximately equal within a specified epsilon range.
    /// 
    /// The first .
    /// The second .
    /// The epsilon range.
    ///  if the s are approximately equal; otherwise, .
    public static bool ApproximatelyEquals(Vector4D left, Vector4D right, float epsilon = float.Epsilon)
        => left.X.ApproximatelyEquals(right.X, epsilon) && left.Y.ApproximatelyEquals(right.Y, epsilon) && left.Z.ApproximatelyEquals(right.Z, epsilon) && left.Z.ApproximatelyEquals(right.W, epsilon);
    /// 
    /// Determines whether the specified object is equal to the current .
    /// 
    /// The object to compare with the current .
    ///  if the specified object is equal to the current ; otherwise, .
    public override bool Equals(object? obj) => obj is Vector4D vector4D && this == vector4D;
    public bool Equals(Vector4D other) => this == other;
    /// 
    /// Generates a hash code for the .
    /// 
    /// A hash code for the .
    public override int GetHashCode() => System.HashCode.Combine(X, Y, Z, W);
    /// 
    /// Converts the  to its string representation.
    /// 
    /// A string representation of the .
    public override string ToString() => $"{nameof(Vector4D)}({X}, {Y}, {Z}, {W})";
}
/// 
/// Provides extension methods for  type.
/// 
public static class Vector4DExtensions
{
    /// 
    public static float Length(this Vector4D vector) => Vector4D.Length(vector);
    /// 
    public static float LengthSquared(this Vector4D vector) => Vector4D.LengthSquared(vector);
    /// 
    public static float Distance(this Vector4D from, Vector4D to) => Vector4D.Distance(from, to);
    /// 
    public static Vector4D Invert(this Vector4D vector) => Vector4D.Invert(vector);
    /// 
    public static Vector4D Add(this Vector4D vector, Vector4D vectorToAdd) => Vector4D.Add(vector, vectorToAdd);
    /// 
    public static Vector4D Subtract(this Vector4D vector, Vector4D vectorToSubtract) => Vector4D.Subtract(vector, vectorToSubtract);
    /// 
    public static Vector4D Multiply(this Vector4D vector, float value) => Vector4D.Multiply(vector, value);
    /// 
    public static Vector4D Divide(this Vector4D vector, float value) => Vector4D.Divide(vector, value);
    /// 
    public static Vector4D Abs(this Vector4D vector) => Vector4D.Abs(vector);
    /// 
    public static Vector4D Normalize(this Vector4D vector) => Vector4D.Normalize(vector);
    /// 
    public static Vector4D FromTo(this Vector4D from, Vector4D to) => Vector4D.FromTo(from, to);
    /// 
    public static Vector4D Scale(this Vector4D vector, Vector4D scale) => Vector4D.Scale(vector, scale);
    /// 
    public static Vector4D Min(this Vector4D left, Vector4D right) => Vector4D.Min(left, right);
    /// 
    public static Vector4D Max(this Vector4D left, Vector4D right) => Vector4D.Max(left, right);
    /// 
    public static Vector4D Clamp(this Vector4D vector, Vector4D min, Vector4D max) => Vector4D.Clamp(vector, min, max);
    /// 
    public static Vector4D Lerp(this Vector4D from, Vector4D to, float t) => Vector4D.Lerp(from, to, t);
    /// 
    public static float Dot(this Vector4D left, Vector4D right) => Vector4D.Dot(left, right);
    /// 
    public static bool ApproximatelyEquals(this Vector4D left, Vector4D right, float epsilon = float.Epsilon) => Vector4D.ApproximatelyEquals(left, right, epsilon);
}