Initial Commit
This commit is contained in:
parent
10446769ad
commit
284d09a446
|
@ -0,0 +1,398 @@
|
|||
## Ignore Visual Studio temporary files, build results, and
|
||||
## files generated by popular Visual Studio add-ons.
|
||||
##
|
||||
## Get latest from https://github.com/github/gitignore/blob/main/VisualStudio.gitignore
|
||||
|
||||
# User-specific files
|
||||
*.rsuser
|
||||
*.suo
|
||||
*.user
|
||||
*.userosscache
|
||||
*.sln.docstates
|
||||
|
||||
# User-specific files (MonoDevelop/Xamarin Studio)
|
||||
*.userprefs
|
||||
|
||||
# Mono auto generated files
|
||||
mono_crash.*
|
||||
|
||||
# Build results
|
||||
[Dd]ebug/
|
||||
[Dd]ebugPublic/
|
||||
[Rr]elease/
|
||||
[Rr]eleases/
|
||||
x64/
|
||||
x86/
|
||||
[Ww][Ii][Nn]32/
|
||||
[Aa][Rr][Mm]/
|
||||
[Aa][Rr][Mm]64/
|
||||
bld/
|
||||
[Bb]in/
|
||||
[Oo]bj/
|
||||
[Ll]og/
|
||||
[Ll]ogs/
|
||||
|
||||
# Visual Studio 2015/2017 cache/options directory
|
||||
.vs/
|
||||
# Uncomment if you have tasks that create the project's static files in wwwroot
|
||||
#wwwroot/
|
||||
|
||||
# Visual Studio 2017 auto generated files
|
||||
Generated\ Files/
|
||||
|
||||
# MSTest test Results
|
||||
[Tt]est[Rr]esult*/
|
||||
[Bb]uild[Ll]og.*
|
||||
|
||||
# NUnit
|
||||
*.VisualState.xml
|
||||
TestResult.xml
|
||||
nunit-*.xml
|
||||
|
||||
# Build Results of an ATL Project
|
||||
[Dd]ebugPS/
|
||||
[Rr]eleasePS/
|
||||
dlldata.c
|
||||
|
||||
# Benchmark Results
|
||||
BenchmarkDotNet.Artifacts/
|
||||
|
||||
# .NET Core
|
||||
project.lock.json
|
||||
project.fragment.lock.json
|
||||
artifacts/
|
||||
|
||||
# ASP.NET Scaffolding
|
||||
ScaffoldingReadMe.txt
|
||||
|
||||
# StyleCop
|
||||
StyleCopReport.xml
|
||||
|
||||
# Files built by Visual Studio
|
||||
*_i.c
|
||||
*_p.c
|
||||
*_h.h
|
||||
*.ilk
|
||||
*.meta
|
||||
*.obj
|
||||
*.iobj
|
||||
*.pch
|
||||
*.pdb
|
||||
*.ipdb
|
||||
*.pgc
|
||||
*.pgd
|
||||
*.rsp
|
||||
*.sbr
|
||||
*.tlb
|
||||
*.tli
|
||||
*.tlh
|
||||
*.tmp
|
||||
*.tmp_proj
|
||||
*_wpftmp.csproj
|
||||
*.log
|
||||
*.tlog
|
||||
*.vspscc
|
||||
*.vssscc
|
||||
.builds
|
||||
*.pidb
|
||||
*.svclog
|
||||
*.scc
|
||||
|
||||
# Chutzpah Test files
|
||||
_Chutzpah*
|
||||
|
||||
# Visual C++ cache files
|
||||
ipch/
|
||||
*.aps
|
||||
*.ncb
|
||||
*.opendb
|
||||
*.opensdf
|
||||
*.sdf
|
||||
*.cachefile
|
||||
*.VC.db
|
||||
*.VC.VC.opendb
|
||||
|
||||
# Visual Studio profiler
|
||||
*.psess
|
||||
*.vsp
|
||||
*.vspx
|
||||
*.sap
|
||||
|
||||
# Visual Studio Trace Files
|
||||
*.e2e
|
||||
|
||||
# TFS 2012 Local Workspace
|
||||
$tf/
|
||||
|
||||
# Guidance Automation Toolkit
|
||||
*.gpState
|
||||
|
||||
# ReSharper is a .NET coding add-in
|
||||
_ReSharper*/
|
||||
*.[Rr]e[Ss]harper
|
||||
*.DotSettings.user
|
||||
|
||||
# TeamCity is a build add-in
|
||||
_TeamCity*
|
||||
|
||||
# DotCover is a Code Coverage Tool
|
||||
*.dotCover
|
||||
|
||||
# AxoCover is a Code Coverage Tool
|
||||
.axoCover/*
|
||||
!.axoCover/settings.json
|
||||
|
||||
# Coverlet is a free, cross platform Code Coverage Tool
|
||||
coverage*.json
|
||||
coverage*.xml
|
||||
coverage*.info
|
||||
|
||||
# Visual Studio code coverage results
|
||||
*.coverage
|
||||
*.coveragexml
|
||||
|
||||
# NCrunch
|
||||
_NCrunch_*
|
||||
.*crunch*.local.xml
|
||||
nCrunchTemp_*
|
||||
|
||||
# MightyMoose
|
||||
*.mm.*
|
||||
AutoTest.Net/
|
||||
|
||||
# Web workbench (sass)
|
||||
.sass-cache/
|
||||
|
||||
# Installshield output folder
|
||||
[Ee]xpress/
|
||||
|
||||
# DocProject is a documentation generator add-in
|
||||
DocProject/buildhelp/
|
||||
DocProject/Help/*.HxT
|
||||
DocProject/Help/*.HxC
|
||||
DocProject/Help/*.hhc
|
||||
DocProject/Help/*.hhk
|
||||
DocProject/Help/*.hhp
|
||||
DocProject/Help/Html2
|
||||
DocProject/Help/html
|
||||
|
||||
# Click-Once directory
|
||||
publish/
|
||||
|
||||
# Publish Web Output
|
||||
*.[Pp]ublish.xml
|
||||
*.azurePubxml
|
||||
# Note: Comment the next line if you want to checkin your web deploy settings,
|
||||
# but database connection strings (with potential passwords) will be unencrypted
|
||||
*.pubxml
|
||||
*.publishproj
|
||||
|
||||
# Microsoft Azure Web App publish settings. Comment the next line if you want to
|
||||
# checkin your Azure Web App publish settings, but sensitive information contained
|
||||
# in these scripts will be unencrypted
|
||||
PublishScripts/
|
||||
|
||||
# NuGet Packages
|
||||
*.nupkg
|
||||
# NuGet Symbol Packages
|
||||
*.snupkg
|
||||
# The packages folder can be ignored because of Package Restore
|
||||
**/[Pp]ackages/*
|
||||
# except build/, which is used as an MSBuild target.
|
||||
!**/[Pp]ackages/build/
|
||||
# Uncomment if necessary however generally it will be regenerated when needed
|
||||
#!**/[Pp]ackages/repositories.config
|
||||
# NuGet v3's project.json files produces more ignorable files
|
||||
*.nuget.props
|
||||
*.nuget.targets
|
||||
|
||||
# Microsoft Azure Build Output
|
||||
csx/
|
||||
*.build.csdef
|
||||
|
||||
# Microsoft Azure Emulator
|
||||
ecf/
|
||||
rcf/
|
||||
|
||||
# Windows Store app package directories and files
|
||||
AppPackages/
|
||||
BundleArtifacts/
|
||||
Package.StoreAssociation.xml
|
||||
_pkginfo.txt
|
||||
*.appx
|
||||
*.appxbundle
|
||||
*.appxupload
|
||||
|
||||
# Visual Studio cache files
|
||||
# files ending in .cache can be ignored
|
||||
*.[Cc]ache
|
||||
# but keep track of directories ending in .cache
|
||||
!?*.[Cc]ache/
|
||||
|
||||
# Others
|
||||
ClientBin/
|
||||
~$*
|
||||
*~
|
||||
*.dbmdl
|
||||
*.dbproj.schemaview
|
||||
*.jfm
|
||||
*.pfx
|
||||
*.publishsettings
|
||||
orleans.codegen.cs
|
||||
|
||||
# Including strong name files can present a security risk
|
||||
# (https://github.com/github/gitignore/pull/2483#issue-259490424)
|
||||
#*.snk
|
||||
|
||||
# Since there are multiple workflows, uncomment next line to ignore bower_components
|
||||
# (https://github.com/github/gitignore/pull/1529#issuecomment-104372622)
|
||||
#bower_components/
|
||||
|
||||
# RIA/Silverlight projects
|
||||
Generated_Code/
|
||||
|
||||
# Backup & report files from converting an old project file
|
||||
# to a newer Visual Studio version. Backup files are not needed,
|
||||
# because we have git ;-)
|
||||
_UpgradeReport_Files/
|
||||
Backup*/
|
||||
UpgradeLog*.XML
|
||||
UpgradeLog*.htm
|
||||
ServiceFabricBackup/
|
||||
*.rptproj.bak
|
||||
|
||||
# SQL Server files
|
||||
*.mdf
|
||||
*.ldf
|
||||
*.ndf
|
||||
|
||||
# Business Intelligence projects
|
||||
*.rdl.data
|
||||
*.bim.layout
|
||||
*.bim_*.settings
|
||||
*.rptproj.rsuser
|
||||
*- [Bb]ackup.rdl
|
||||
*- [Bb]ackup ([0-9]).rdl
|
||||
*- [Bb]ackup ([0-9][0-9]).rdl
|
||||
|
||||
# Microsoft Fakes
|
||||
FakesAssemblies/
|
||||
|
||||
# GhostDoc plugin setting file
|
||||
*.GhostDoc.xml
|
||||
|
||||
# Node.js Tools for Visual Studio
|
||||
.ntvs_analysis.dat
|
||||
node_modules/
|
||||
|
||||
# Visual Studio 6 build log
|
||||
*.plg
|
||||
|
||||
# Visual Studio 6 workspace options file
|
||||
*.opt
|
||||
|
||||
# Visual Studio 6 auto-generated workspace file (contains which files were open etc.)
|
||||
*.vbw
|
||||
|
||||
# Visual Studio 6 auto-generated project file (contains which files were open etc.)
|
||||
*.vbp
|
||||
|
||||
# Visual Studio 6 workspace and project file (working project files containing files to include in project)
|
||||
*.dsw
|
||||
*.dsp
|
||||
|
||||
# Visual Studio 6 technical files
|
||||
*.ncb
|
||||
*.aps
|
||||
|
||||
# Visual Studio LightSwitch build output
|
||||
**/*.HTMLClient/GeneratedArtifacts
|
||||
**/*.DesktopClient/GeneratedArtifacts
|
||||
**/*.DesktopClient/ModelManifest.xml
|
||||
**/*.Server/GeneratedArtifacts
|
||||
**/*.Server/ModelManifest.xml
|
||||
_Pvt_Extensions
|
||||
|
||||
# Paket dependency manager
|
||||
.paket/paket.exe
|
||||
paket-files/
|
||||
|
||||
# FAKE - F# Make
|
||||
.fake/
|
||||
|
||||
# CodeRush personal settings
|
||||
.cr/personal
|
||||
|
||||
# Python Tools for Visual Studio (PTVS)
|
||||
__pycache__/
|
||||
*.pyc
|
||||
|
||||
# Cake - Uncomment if you are using it
|
||||
# tools/**
|
||||
# !tools/packages.config
|
||||
|
||||
# Tabs Studio
|
||||
*.tss
|
||||
|
||||
# Telerik's JustMock configuration file
|
||||
*.jmconfig
|
||||
|
||||
# BizTalk build output
|
||||
*.btp.cs
|
||||
*.btm.cs
|
||||
*.odx.cs
|
||||
*.xsd.cs
|
||||
|
||||
# OpenCover UI analysis results
|
||||
OpenCover/
|
||||
|
||||
# Azure Stream Analytics local run output
|
||||
ASALocalRun/
|
||||
|
||||
# MSBuild Binary and Structured Log
|
||||
*.binlog
|
||||
|
||||
# NVidia Nsight GPU debugger configuration file
|
||||
*.nvuser
|
||||
|
||||
# MFractors (Xamarin productivity tool) working folder
|
||||
.mfractor/
|
||||
|
||||
# Local History for Visual Studio
|
||||
.localhistory/
|
||||
|
||||
# Visual Studio History (VSHistory) files
|
||||
.vshistory/
|
||||
|
||||
# BeatPulse healthcheck temp database
|
||||
healthchecksdb
|
||||
|
||||
# Backup folder for Package Reference Convert tool in Visual Studio 2017
|
||||
MigrationBackup/
|
||||
|
||||
# Ionide (cross platform F# VS Code tools) working folder
|
||||
.ionide/
|
||||
|
||||
# Fody - auto-generated XML schema
|
||||
FodyWeavers.xsd
|
||||
|
||||
# VS Code files for those working on multiple tools
|
||||
.vscode/*
|
||||
!.vscode/settings.json
|
||||
!.vscode/tasks.json
|
||||
!.vscode/launch.json
|
||||
!.vscode/extensions.json
|
||||
*.code-workspace
|
||||
|
||||
# Local History for Visual Studio Code
|
||||
.history/
|
||||
|
||||
# Windows Installer files from build outputs
|
||||
*.cab
|
||||
*.msi
|
||||
*.msix
|
||||
*.msm
|
||||
*.msp
|
||||
|
||||
# JetBrains Rider
|
||||
*.sln.iml
|
|
@ -0,0 +1,26 @@
|
|||
{
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
{
|
||||
// Use IntelliSense to find out which attributes exist for C# debugging
|
||||
// Use hover for the description of the existing attributes
|
||||
// For further information visit https://github.com/OmniSharp/omnisharp-vscode/blob/master/debugger-launchjson.md
|
||||
"name": ".NET Core Launch (console)",
|
||||
"type": "coreclr",
|
||||
"request": "launch",
|
||||
"preLaunchTask": "build",
|
||||
// If you have changed target frameworks, make sure to update the program path.
|
||||
"program": "${workspaceFolder}/bin/Debug/net5.0/NeuralNetwork2021.dll",
|
||||
"args": [],
|
||||
"cwd": "${workspaceFolder}",
|
||||
// For more information about the 'console' field, see https://aka.ms/VSCode-CS-LaunchJson-Console
|
||||
"console": "internalConsole",
|
||||
"stopAtEntry": false
|
||||
},
|
||||
{
|
||||
"name": ".NET Core Attach",
|
||||
"type": "coreclr",
|
||||
"request": "attach"
|
||||
}
|
||||
]
|
||||
}
|
|
@ -0,0 +1,42 @@
|
|||
{
|
||||
"version": "2.0.0",
|
||||
"tasks": [
|
||||
{
|
||||
"label": "build",
|
||||
"command": "dotnet",
|
||||
"type": "process",
|
||||
"args": [
|
||||
"build",
|
||||
"${workspaceFolder}/NeuralNetwork2021.csproj",
|
||||
"/property:GenerateFullPaths=true",
|
||||
"/consoleloggerparameters:NoSummary"
|
||||
],
|
||||
"problemMatcher": "$msCompile"
|
||||
},
|
||||
{
|
||||
"label": "publish",
|
||||
"command": "dotnet",
|
||||
"type": "process",
|
||||
"args": [
|
||||
"publish",
|
||||
"${workspaceFolder}/NeuralNetwork2021.csproj",
|
||||
"/property:GenerateFullPaths=true",
|
||||
"/consoleloggerparameters:NoSummary"
|
||||
],
|
||||
"problemMatcher": "$msCompile"
|
||||
},
|
||||
{
|
||||
"label": "watch",
|
||||
"command": "dotnet",
|
||||
"type": "process",
|
||||
"args": [
|
||||
"watch",
|
||||
"run",
|
||||
"${workspaceFolder}/NeuralNetwork2021.csproj",
|
||||
"/property:GenerateFullPaths=true",
|
||||
"/consoleloggerparameters:NoSummary"
|
||||
],
|
||||
"problemMatcher": "$msCompile"
|
||||
}
|
||||
]
|
||||
}
|
|
@ -0,0 +1,8 @@
|
|||
<Project Sdk="Microsoft.NET.Sdk">
|
||||
|
||||
<PropertyGroup>
|
||||
<OutputType>Exe</OutputType>
|
||||
<TargetFramework>net5.0</TargetFramework>
|
||||
</PropertyGroup>
|
||||
|
||||
</Project>
|
|
@ -0,0 +1,48 @@
|
|||
using System;
|
||||
using System.Linq;
|
||||
using Syntriax.NeuralNetwork;
|
||||
using Syntriax.NeuralNetwork.Misc;
|
||||
using Syntriax.NeuralNetwork.NeuronActivations;
|
||||
|
||||
namespace NeuralNetwork2021
|
||||
{
|
||||
class Program
|
||||
{
|
||||
static void Main(string[] args)
|
||||
{
|
||||
const int epochCount = 5000;
|
||||
const int epochPrintInterval = 1;
|
||||
|
||||
const int dataSeed = 10;
|
||||
const int weightSeed = 0;
|
||||
const int dropoutSeed = 0;
|
||||
DropoutNeuronDecorator.Random = new Random(dropoutSeed);
|
||||
|
||||
double learningRate = 0.001;
|
||||
|
||||
Data data = new Data(DataTest.LoadData().ToList(), 4, seed: dataSeed);
|
||||
|
||||
NeuralNetwork neuralNetwork = new NeuralNetwork
|
||||
(
|
||||
data.InputCount,
|
||||
new int[] { 10 },
|
||||
data.OutputCount
|
||||
);
|
||||
|
||||
foreach (LayerBase layer in neuralNetwork.GetLayerList())
|
||||
layer.SetActivation(StaticActivation<Relu>.Instance);
|
||||
// neuralNetwork.outputLayer.SetActivation(StaticActivation<Relu>.Instance);
|
||||
|
||||
neuralNetwork.Randomize(weightSeed);
|
||||
|
||||
for (int k = 0; k < epochCount; k++)
|
||||
{
|
||||
if (k % epochPrintInterval == 0)
|
||||
Console.WriteLine($"Epoch: {k}\tHata: { neuralNetwork.GetTotalError(data) }");
|
||||
|
||||
neuralNetwork.Train(data, learningRate);
|
||||
}
|
||||
Console.WriteLine($"Hata: { neuralNetwork.GetTotalError(data) }");
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,9 @@
|
|||
namespace Syntriax.NeuralNetwork
|
||||
{
|
||||
public class InputNeuron : Neuron
|
||||
{
|
||||
public double Value = 0.0;
|
||||
|
||||
public override double Output => Value;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,18 @@
|
|||
namespace Syntriax.NeuralNetwork
|
||||
{
|
||||
public class HiddenLayer : LayerBase
|
||||
{
|
||||
public HiddenLayer(int neuronCount, LayerBase from = null) : base(neuronCount, from) { }
|
||||
|
||||
protected override void SetLayer(int neuronCount, LayerBase from)
|
||||
{
|
||||
neurons = new INeuron[neuronCount];
|
||||
|
||||
for (int i = 0; i < neuronCount; i++)
|
||||
{
|
||||
neurons[i] = new Neuron(from == null ? null : from.neurons);
|
||||
// neurons[i] = new DropoutNeuronDecorator(neurons[i], 0.2); // TODO
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,15 @@
|
|||
namespace Syntriax.NeuralNetwork
|
||||
{
|
||||
public class InputLayer : LayerBase
|
||||
{
|
||||
public InputLayer(int neuronCount, LayerBase from = null) : base(neuronCount, from) { }
|
||||
|
||||
protected override void SetLayer(int neuronCount, LayerBase from)
|
||||
{
|
||||
neurons = new Neuron[neuronCount];
|
||||
|
||||
for (int i = 0; i < neuronCount; i++)
|
||||
neurons[i] = new InputNeuron();
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,25 @@
|
|||
using Syntriax.NeuralNetwork.NeuronActivations;
|
||||
|
||||
namespace Syntriax.NeuralNetwork
|
||||
{
|
||||
public abstract class LayerBase
|
||||
{
|
||||
public INeuron[] neurons { get; protected set; } = null;
|
||||
|
||||
public LayerBase(int neuronCount, LayerBase from = null) => SetLayer(neuronCount, from);
|
||||
|
||||
protected abstract void SetLayer(int neuronCount, LayerBase from);
|
||||
|
||||
public void FireLayer()
|
||||
{
|
||||
foreach (INeuron neuron in neurons)
|
||||
neuron.Calculate();
|
||||
}
|
||||
|
||||
public void SetActivation(INeuronActivation neuronActivation)
|
||||
{
|
||||
foreach (INeuron neuron in neurons)
|
||||
neuron.NeuronActivation = neuronActivation;
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,15 @@
|
|||
namespace Syntriax.NeuralNetwork
|
||||
{
|
||||
public class OutputLayer : HiddenLayer
|
||||
{
|
||||
public OutputLayer(int neuronCount, LayerBase from = null) : base(neuronCount, from) { }
|
||||
|
||||
protected override void SetLayer(int neuronCount, LayerBase from)
|
||||
{
|
||||
neurons = new INeuron[neuronCount];
|
||||
|
||||
for (int i = 0; i < neuronCount; i++)
|
||||
neurons[i] = new Neuron(from.neurons);
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,92 @@
|
|||
using System;
|
||||
using System.Collections.Generic;
|
||||
|
||||
namespace Syntriax.NeuralNetwork.Misc
|
||||
{
|
||||
public class Data
|
||||
{
|
||||
public int InputCount => trainInput[0].Length;
|
||||
public int OutputCount => trainOutput[0].Length;
|
||||
public List<double[]> trainInput { get; private set; } = null;
|
||||
public List<double[]> trainOutput { get; private set; } = null;
|
||||
public List<double[]> testInput { get; private set; } = null;
|
||||
public List<double[]> testOutput { get; private set; } = null;
|
||||
|
||||
public Data(List<double[]> data, int inputCount, double trainRatio = 0.2, int? seed = null)
|
||||
{
|
||||
int indexToSwap = 0;
|
||||
int count = data.Count;
|
||||
int testCount = (int)(count * trainRatio);
|
||||
Random random = new Random(seed ?? 0);
|
||||
|
||||
double[] inputArray = null;
|
||||
double[] outputArray = null;
|
||||
|
||||
trainInput = new List<double[]>(count - testCount);
|
||||
trainOutput = new List<double[]>(count - testCount);
|
||||
testInput = new List<double[]>(testCount);
|
||||
testOutput = new List<double[]>(testCount);
|
||||
|
||||
for (int i = 0; i < count; i++)
|
||||
{
|
||||
indexToSwap = random.Next(i, count);
|
||||
(data[i], data[indexToSwap]) = (data[indexToSwap], data[i]);
|
||||
}
|
||||
|
||||
for (int i = 0; i < count; i++)
|
||||
{
|
||||
(inputArray, outputArray) = SplitData(data[i], inputCount);
|
||||
if (i < testCount)
|
||||
{
|
||||
testInput.Add(inputArray);
|
||||
testOutput.Add(outputArray);
|
||||
}
|
||||
else
|
||||
{
|
||||
trainInput.Add(inputArray);
|
||||
trainOutput.Add(outputArray);
|
||||
}
|
||||
}
|
||||
}
|
||||
public Data(List<double[]> train, List<double[]> test, int inputCount, double trainRatio = 0.2)
|
||||
{
|
||||
double[] inputArray = null;
|
||||
double[] outputArray = null;
|
||||
|
||||
trainInput = new List<double[]>(train.Count);
|
||||
trainOutput = new List<double[]>(train.Count);
|
||||
testInput = new List<double[]>(test.Count);
|
||||
testOutput = new List<double[]>(test.Count);
|
||||
|
||||
for (int i = 0; i < train.Count; i++)
|
||||
{
|
||||
(inputArray, outputArray) = SplitData(train[i], inputCount);
|
||||
trainInput.Add(inputArray);
|
||||
trainOutput.Add(outputArray);
|
||||
}
|
||||
|
||||
for (int i = 0; i < test.Count; i++)
|
||||
{
|
||||
(inputArray, outputArray) = SplitData(test[i], inputCount);
|
||||
testInput.Add(inputArray);
|
||||
testOutput.Add(outputArray);
|
||||
}
|
||||
}
|
||||
|
||||
private (double[] inputArray, double[] outputArray) SplitData(double[] array, int inputCount)
|
||||
{
|
||||
int outputCount = array.Length - inputCount + 1;
|
||||
int i = 0;
|
||||
double[] input = new double[inputCount];
|
||||
double[] output = new double[outputCount];
|
||||
|
||||
for (i = 0; i < array.Length; i++)
|
||||
if (i >= inputCount)
|
||||
output[i - inputCount] = array[i];
|
||||
else
|
||||
input[i] = array[i];
|
||||
|
||||
return (input, output);
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,83 @@
|
|||
// using System;
|
||||
|
||||
// namespace Syntriax.NeuralNetwork.Misc
|
||||
// {
|
||||
// public class DataNew
|
||||
// {
|
||||
// public int InputCount => trainInput.GetLength(0);
|
||||
// public int OutputCount => trainOutput.GetLength(0);
|
||||
// public double[,] trainInput { get; private set; } = null;
|
||||
// public double[,] trainOutput { get; private set; } = null;
|
||||
// public double[,] testInput { get; private set; } = null;
|
||||
// public double[,] testOutput { get; private set; } = null;
|
||||
|
||||
// public DataNew(double[,] data, int inputCount, double testRatio = 0.2, int? seed = null)
|
||||
// {
|
||||
// int attributeCount = data.GetLength(1);
|
||||
// int dataCount = data.GetLength(0);
|
||||
// int testCount = (int)(dataCount * testRatio);
|
||||
// int trainCount = dataCount - testCount;
|
||||
|
||||
// double[,] trainData = new double[trainCount, attributeCount];
|
||||
// double[,] testData = new double[testCount, attributeCount];
|
||||
|
||||
// if (seed != null)
|
||||
// Shuffle(data, attributeCount, new Random(seed.Value));
|
||||
|
||||
// int i = 0;
|
||||
// int a = 0;
|
||||
// for (i = 0; i < dataCount; i++)
|
||||
// for (a = 0; a < attributeCount; a++)
|
||||
|
||||
|
||||
// }
|
||||
|
||||
// private void Shuffle(double[,] data, int attributeCount, Random random)
|
||||
// {
|
||||
// int indexToSwap = 0;
|
||||
// int length = data.Length;
|
||||
// int i = 0;
|
||||
// int a = 0;
|
||||
|
||||
// for (i = 0; i < length; i++)
|
||||
// {
|
||||
// indexToSwap = random.Next(i, length);
|
||||
// for (a = 0; a < attributeCount; a++)
|
||||
// (data[i, a], data[indexToSwap, a]) = (data[indexToSwap, a], data[i, a]);
|
||||
// }
|
||||
// }
|
||||
|
||||
// public DataNew(double[,] train, double[,] test, int inputCount)
|
||||
// {
|
||||
// int attributeCount = train.GetLength(1);
|
||||
// int attributeInputCount = inputCount;
|
||||
// int attributeOutputCount = attributeCount - attributeInputCount;
|
||||
|
||||
// int trainCount = train.GetLength(0);
|
||||
// int testCount = test.GetLength(0);
|
||||
|
||||
// trainInput = new double[train.GetLength(0), attributeInputCount];
|
||||
// trainOutput = new double[train.GetLength(0), attributeOutputCount];
|
||||
// testInput = new double[test.GetLength(0), attributeInputCount];
|
||||
// testOutput = new double[test.GetLength(0), attributeOutputCount];
|
||||
|
||||
// SplitIntoAttributeArrays(train, trainInput, trainOutput, trainCount, attributeInputCount, attributeOutputCount);
|
||||
// SplitIntoAttributeArrays(test, testInput, testOutput, testCount, attributeInputCount, attributeOutputCount);
|
||||
// }
|
||||
|
||||
// private void SplitIntoAttributeArrays(double[,] source, double[,] inputDestination, double[,] outputDestination,
|
||||
// int count, int inputCount, int outputCount)
|
||||
// {
|
||||
// int i = 0;
|
||||
// int j = 0;
|
||||
|
||||
// for (i = 0; i < count; i++)
|
||||
// {
|
||||
// for (j = 0; j < inputCount; j++)
|
||||
// inputDestination[i, j] = source[i, j];
|
||||
// for (j = 0; j < outputCount; j++)
|
||||
// outputDestination[i, j] = source[i, j + inputCount];
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// }
|
|
@ -0,0 +1,163 @@
|
|||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.IO;
|
||||
|
||||
namespace Syntriax.NeuralNetwork.Misc
|
||||
{
|
||||
public class DataTest
|
||||
{
|
||||
public static double[][] LoadData() => new double[][]
|
||||
{
|
||||
new double[] {5.1,3.5,1.4,0.2,0,0,1},
|
||||
new double[] {4.9,3.0,1.4,0.2,0,0,1},
|
||||
new double[] {4.7,3.2,1.3,0.2,0,0,1},
|
||||
new double[] {4.6,3.1,1.5,0.2,0,0,1},
|
||||
new double[] {5.0,3.6,1.4,0.2,0,0,1},
|
||||
new double[] {5.4,3.9,1.7,0.4,0,0,1},
|
||||
new double[] {4.6,3.4,1.4,0.3,0,0,1},
|
||||
new double[] {5.0,3.4,1.5,0.2,0,0,1},
|
||||
new double[] {4.4,2.9,1.4,0.2,0,0,1},
|
||||
new double[] {4.9,3.1,1.5,0.1,0,0,1},
|
||||
new double[] {5.4,3.7,1.5,0.2,0,0,1},
|
||||
new double[] {4.8,3.4,1.6,0.2,0,0,1},
|
||||
new double[] {4.8,3.0,1.4,0.1,0,0,1},
|
||||
new double[] {4.3,3.0,1.1,0.1,0,0,1},
|
||||
new double[] {5.8,4.0,1.2,0.2,0,0,1},
|
||||
new double[] {5.7,4.4,1.5,0.4,0,0,1},
|
||||
new double[] {5.4,3.9,1.3,0.4,0,0,1},
|
||||
new double[] {5.1,3.5,1.4,0.3,0,0,1},
|
||||
new double[] {5.7,3.8,1.7,0.3,0,0,1},
|
||||
new double[] {5.1,3.8,1.5,0.3,0,0,1},
|
||||
new double[] {5.4,3.4,1.7,0.2,0,0,1},
|
||||
new double[] {5.1,3.7,1.5,0.4,0,0,1},
|
||||
new double[] {4.6,3.6,1.0,0.2,0,0,1},
|
||||
new double[] {5.1,3.3,1.7,0.5,0,0,1},
|
||||
new double[] {4.8,3.4,1.9,0.2,0,0,1},
|
||||
new double[] {5.0,3.0,1.6,0.2,0,0,1},
|
||||
new double[] {5.0,3.4,1.6,0.4,0,0,1},
|
||||
new double[] {5.2,3.5,1.5,0.2,0,0,1},
|
||||
new double[] {5.2,3.4,1.4,0.2,0,0,1},
|
||||
new double[] {4.7,3.2,1.6,0.2,0,0,1},
|
||||
new double[] {4.8,3.1,1.6,0.2,0,0,1},
|
||||
new double[] {5.4,3.4,1.5,0.4,0,0,1},
|
||||
new double[] {5.2,4.1,1.5,0.1,0,0,1},
|
||||
new double[] {5.5,4.2,1.4,0.2,0,0,1},
|
||||
new double[] {4.9,3.1,1.5,0.1,0,0,1},
|
||||
new double[] {5.0,3.2,1.2,0.2,0,0,1},
|
||||
new double[] {5.5,3.5,1.3,0.2,0,0,1},
|
||||
new double[] {4.9,3.1,1.5,0.1,0,0,1},
|
||||
new double[] {4.4,3.0,1.3,0.2,0,0,1},
|
||||
new double[] {5.1,3.4,1.5,0.2,0,0,1},
|
||||
new double[] {5.0,3.5,1.3,0.3,0,0,1},
|
||||
new double[] {4.5,2.3,1.3,0.3,0,0,1},
|
||||
new double[] {4.4,3.2,1.3,0.2,0,0,1},
|
||||
new double[] {5.0,3.5,1.6,0.6,0,0,1},
|
||||
new double[] {5.1,3.8,1.9,0.4,0,0,1},
|
||||
new double[] {4.8,3.0,1.4,0.3,0,0,1},
|
||||
new double[] {5.1,3.8,1.6,0.2,0,0,1},
|
||||
new double[] {4.6,3.2,1.4,0.2,0,0,1},
|
||||
new double[] {5.3,3.7,1.5,0.2,0,0,1},
|
||||
new double[] {5.0,3.3,1.4,0.2,0,0,1},
|
||||
new double[] {7.0,3.2,4.7,1.4,0,1,0},
|
||||
new double[] {6.4,3.2,4.5,1.5,0,1,0},
|
||||
new double[] {6.9,3.1,4.9,1.5,0,1,0},
|
||||
new double[] {5.5,2.3,4.0,1.3,0,1,0},
|
||||
new double[] {6.5,2.8,4.6,1.5,0,1,0},
|
||||
new double[] {5.7,2.8,4.5,1.3,0,1,0},
|
||||
new double[] {6.3,3.3,4.7,1.6,0,1,0},
|
||||
new double[] {4.9,2.4,3.3,1.0,0,1,0},
|
||||
new double[] {6.6,2.9,4.6,1.3,0,1,0},
|
||||
new double[] {5.2,2.7,3.9,1.4,0,1,0},
|
||||
new double[] {5.0,2.0,3.5,1.0,0,1,0},
|
||||
new double[] {5.9,3.0,4.2,1.5,0,1,0},
|
||||
new double[] {6.0,2.2,4.0,1.0,0,1,0},
|
||||
new double[] {6.1,2.9,4.7,1.4,0,1,0},
|
||||
new double[] {5.6,2.9,3.6,1.3,0,1,0},
|
||||
new double[] {6.7,3.1,4.4,1.4,0,1,0},
|
||||
new double[] {5.6,3.0,4.5,1.5,0,1,0},
|
||||
new double[] {5.8,2.7,4.1,1.0,0,1,0},
|
||||
new double[] {6.2,2.2,4.5,1.5,0,1,0},
|
||||
new double[] {5.6,2.5,3.9,1.1,0,1,0},
|
||||
new double[] {5.9,3.2,4.8,1.8,0,1,0},
|
||||
new double[] {6.1,2.8,4.0,1.3,0,1,0},
|
||||
new double[] {6.3,2.5,4.9,1.5,0,1,0},
|
||||
new double[] {6.1,2.8,4.7,1.2,0,1,0},
|
||||
new double[] {6.4,2.9,4.3,1.3,0,1,0},
|
||||
new double[] {6.6,3.0,4.4,1.4,0,1,0},
|
||||
new double[] {6.8,2.8,4.8,1.4,0,1,0},
|
||||
new double[] {6.7,3.0,5.0,1.7,0,1,0},
|
||||
new double[] {6.0,2.9,4.5,1.5,0,1,0},
|
||||
new double[] {5.7,2.6,3.5,1.0,0,1,0},
|
||||
new double[] {5.5,2.4,3.8,1.1,0,1,0},
|
||||
new double[] {5.5,2.4,3.7,1.0,0,1,0},
|
||||
new double[] {5.8,2.7,3.9,1.2,0,1,0},
|
||||
new double[] {6.0,2.7,5.1,1.6,0,1,0},
|
||||
new double[] {5.4,3.0,4.5,1.5,0,1,0},
|
||||
new double[] {6.0,3.4,4.5,1.6,0,1,0},
|
||||
new double[] {6.7,3.1,4.7,1.5,0,1,0},
|
||||
new double[] {6.3,2.3,4.4,1.3,0,1,0},
|
||||
new double[] {5.6,3.0,4.1,1.3,0,1,0},
|
||||
new double[] {5.5,2.5,4.0,1.3,0,1,0},
|
||||
new double[] {5.5,2.6,4.4,1.2,0,1,0},
|
||||
new double[] {6.1,3.0,4.6,1.4,0,1,0},
|
||||
new double[] {5.8,2.6,4.0,1.2,0,1,0},
|
||||
new double[] {5.0,2.3,3.3,1.0,0,1,0},
|
||||
new double[] {5.6,2.7,4.2,1.3,0,1,0},
|
||||
new double[] {5.7,3.0,4.2,1.2,0,1,0},
|
||||
new double[] {5.7,2.9,4.2,1.3,0,1,0},
|
||||
new double[] {6.2,2.9,4.3,1.3,0,1,0},
|
||||
new double[] {5.1,2.5,3.0,1.1,0,1,0},
|
||||
new double[] {5.7,2.8,4.1,1.3,0,1,0},
|
||||
new double[] {6.3,3.3,6.0,2.5,1,0,0},
|
||||
new double[] {5.8,2.7,5.1,1.9,1,0,0},
|
||||
new double[] {7.1,3.0,5.9,2.1,1,0,0},
|
||||
new double[] {6.3,2.9,5.6,1.8,1,0,0},
|
||||
new double[] {6.5,3.0,5.8,2.2,1,0,0},
|
||||
new double[] {7.6,3.0,6.6,2.1,1,0,0},
|
||||
new double[] {4.9,2.5,4.5,1.7,1,0,0},
|
||||
new double[] {7.3,2.9,6.3,1.8,1,0,0},
|
||||
new double[] {6.7,2.5,5.8,1.8,1,0,0},
|
||||
new double[] {7.2,3.6,6.1,2.5,1,0,0},
|
||||
new double[] {6.5,3.2,5.1,2.0,1,0,0},
|
||||
new double[] {6.4,2.7,5.3,1.9,1,0,0},
|
||||
new double[] {6.8,3.0,5.5,2.1,1,0,0},
|
||||
new double[] {5.7,2.5,5.0,2.0,1,0,0},
|
||||
new double[] {5.8,2.8,5.1,2.4,1,0,0},
|
||||
new double[] {6.4,3.2,5.3,2.3,1,0,0},
|
||||
new double[] {6.5,3.0,5.5,1.8,1,0,0},
|
||||
new double[] {7.7,3.8,6.7,2.2,1,0,0},
|
||||
new double[] {7.7,2.6,6.9,2.3,1,0,0},
|
||||
new double[] {6.0,2.2,5.0,1.5,1,0,0},
|
||||
new double[] {6.9,3.2,5.7,2.3,1,0,0},
|
||||
new double[] {5.6,2.8,4.9,2.0,1,0,0},
|
||||
new double[] {7.7,2.8,6.7,2.0,1,0,0},
|
||||
new double[] {6.3,2.7,4.9,1.8,1,0,0},
|
||||
new double[] {6.7,3.3,5.7,2.1,1,0,0},
|
||||
new double[] {7.2,3.2,6.0,1.8,1,0,0},
|
||||
new double[] {6.2,2.8,4.8,1.8,1,0,0},
|
||||
new double[] {6.1,3.0,4.9,1.8,1,0,0},
|
||||
new double[] {6.4,2.8,5.6,2.1,1,0,0},
|
||||
new double[] {7.2,3.0,5.8,1.6,1,0,0},
|
||||
new double[] {7.4,2.8,6.1,1.9,1,0,0},
|
||||
new double[] {7.9,3.8,6.4,2.0,1,0,0},
|
||||
new double[] {6.4,2.8,5.6,2.2,1,0,0},
|
||||
new double[] {6.3,2.8,5.1,1.5,1,0,0},
|
||||
new double[] {6.1,2.6,5.6,1.4,1,0,0},
|
||||
new double[] {7.7,3.0,6.1,2.3,1,0,0},
|
||||
new double[] {6.3,3.4,5.6,2.4,1,0,0},
|
||||
new double[] {6.4,3.1,5.5,1.8,1,0,0},
|
||||
new double[] {6.0,3.0,4.8,1.8,1,0,0},
|
||||
new double[] {6.9,3.1,5.4,2.1,1,0,0},
|
||||
new double[] {6.7,3.1,5.6,2.4,1,0,0},
|
||||
new double[] {6.9,3.1,5.1,2.3,1,0,0},
|
||||
new double[] {5.8,2.7,5.1,1.9,1,0,0},
|
||||
new double[] {6.8,3.2,5.9,2.3,1,0,0},
|
||||
new double[] {6.7,3.3,5.7,2.5,1,0,0},
|
||||
new double[] {6.7,3.0,5.2,2.3,1,0,0},
|
||||
new double[] {6.3,2.5,5.0,1.9,1,0,0},
|
||||
new double[] {6.5,3.0,5.2,2.0,1,0,0},
|
||||
new double[] {6.2,3.4,5.4,2.3,1,0,0},
|
||||
new double[] {5.9,3.0,5.1,1.8,1,0,0}
|
||||
};
|
||||
}
|
||||
}
|
|
@ -0,0 +1,39 @@
|
|||
namespace Syntriax.NeuralNetwork
|
||||
{
|
||||
public class NeuralNetwork
|
||||
{
|
||||
public LayerBase inputLayer { get; private set; } = null;
|
||||
public LayerBase[] hiddenLayers { get; private set; } = null;
|
||||
public LayerBase outputLayer { get; private set; } = null;
|
||||
|
||||
public NeuralNetwork(int inputCount, int[] hiddenCounts = null, int outputCount = 1)
|
||||
{
|
||||
inputLayer = new InputLayer(inputCount);
|
||||
|
||||
if (hiddenCounts != null && hiddenCounts.Length > 0)
|
||||
{
|
||||
int hiddenCount = hiddenCounts.Length;
|
||||
|
||||
hiddenLayers = new HiddenLayer[hiddenCount];
|
||||
hiddenLayers[0] = new HiddenLayer(hiddenCounts[0], inputLayer);
|
||||
|
||||
for (int i = 1; i < hiddenCount; i++)
|
||||
hiddenLayers[i] = new HiddenLayer(hiddenCounts[i], hiddenLayers[i - 1]);
|
||||
|
||||
outputLayer = new HiddenLayer(outputCount, hiddenLayers[hiddenLayers.Length - 1]);
|
||||
return;
|
||||
}
|
||||
|
||||
outputLayer = new OutputLayer(outputCount, inputLayer);
|
||||
}
|
||||
|
||||
public void FireNetwork()
|
||||
{
|
||||
if (hiddenLayers != null)
|
||||
foreach (LayerBase layer in hiddenLayers)
|
||||
layer.FireLayer();
|
||||
|
||||
outputLayer.FireLayer();
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,184 @@
|
|||
using System;
|
||||
using System.Collections.Generic;
|
||||
using Syntriax.NeuralNetwork.Misc;
|
||||
|
||||
namespace Syntriax.NeuralNetwork
|
||||
{
|
||||
public static class NeuralNetworkExtensions
|
||||
{
|
||||
public static List<LayerBase> GetLayerList(this NeuralNetwork neuralNetwork)
|
||||
{
|
||||
List<LayerBase> layers = new List<LayerBase>(2 + neuralNetwork.hiddenLayers.Length);
|
||||
|
||||
layers.Add(neuralNetwork.inputLayer);
|
||||
layers.AddRange(neuralNetwork.hiddenLayers);
|
||||
layers.Add(neuralNetwork.outputLayer);
|
||||
|
||||
return layers;
|
||||
}
|
||||
|
||||
public static List<INeuron> GetNeuronList(this NeuralNetwork neuralNetwork)
|
||||
{
|
||||
int neuronCount = 0;
|
||||
List<LayerBase> layers = neuralNetwork.GetLayerList();
|
||||
|
||||
foreach (LayerBase layer in layers)
|
||||
neuronCount += layer.neurons.Length;
|
||||
|
||||
List<INeuron> neurons = new List<INeuron>(neuronCount);
|
||||
|
||||
foreach (LayerBase layer in layers)
|
||||
neurons.AddRange(layer.neurons);
|
||||
|
||||
return neurons;
|
||||
}
|
||||
|
||||
public static List<ISynapse> GetSynapseList(this NeuralNetwork neuralNetwork)
|
||||
{
|
||||
int synapseCount = 0;
|
||||
List<INeuron> neurons = neuralNetwork.GetNeuronList();
|
||||
|
||||
foreach (INeuron neuron in neurons)
|
||||
synapseCount += neuron.Synapses.Length + 1; // + 1 for the bias
|
||||
|
||||
List<ISynapse> synapses = new List<ISynapse>(synapseCount);
|
||||
|
||||
foreach (INeuron neuron in neurons)
|
||||
{
|
||||
synapses.AddRange(neuron.Synapses);
|
||||
synapses.Add(neuron.Bias);
|
||||
}
|
||||
|
||||
return synapses;
|
||||
}
|
||||
|
||||
/* ------------------------------------------------------------- */
|
||||
|
||||
public static void Randomize(this NeuralNetwork neuralNetwork, int? seed = null)
|
||||
{
|
||||
Random random = new Random(seed ?? 0);
|
||||
|
||||
foreach (ISynapse synapse in neuralNetwork.GetSynapseList())
|
||||
synapse.Weight = random.NextDouble();
|
||||
}
|
||||
|
||||
/* ------------------------------------------------------------- */
|
||||
|
||||
public static void SetInput(this NeuralNetwork neuralNetwork, int neuronIndex, double value)
|
||||
{
|
||||
InputNeuron inputNeuron = (InputNeuron)neuralNetwork.inputLayer.neurons[neuronIndex];
|
||||
inputNeuron.Value = value;
|
||||
}
|
||||
public static void SetInputs(this NeuralNetwork neuralNetwork, double[] inputs)
|
||||
{
|
||||
for (int i = 0; i < inputs.Length; i++)
|
||||
neuralNetwork.SetInput(i, inputs[i]);
|
||||
}
|
||||
|
||||
public static double GetOutput(this NeuralNetwork neuralNetwork, int neuronIndex) =>
|
||||
neuralNetwork.outputLayer.neurons[neuronIndex].Output;
|
||||
|
||||
|
||||
/* ------------------------------------------------------------- */
|
||||
|
||||
public static double GetErrorOfNeuron(NeuralNetwork neuralNetwork, double[] output, int i) =>
|
||||
output[i] - neuralNetwork.GetOutput(i);
|
||||
|
||||
public static double[] GetErrors(this NeuralNetwork neuralNetwork, double[] outputs)
|
||||
{
|
||||
int length = neuralNetwork.outputLayer.neurons.Length;
|
||||
double[] result = new double[length];
|
||||
for (int i = 0; i < length; i++)
|
||||
result[i] = GetErrorOfNeuron(neuralNetwork, outputs, i);
|
||||
return result;
|
||||
}
|
||||
|
||||
public static double GetTotalError(this NeuralNetwork neuralNetwork, Data data)
|
||||
{
|
||||
double totalError = 0.0f;
|
||||
double[] errors = null;
|
||||
|
||||
for (int i = 0; i < data.testInput.Count; i++)
|
||||
{
|
||||
neuralNetwork.SetInputs(data.testInput[i]);
|
||||
neuralNetwork.FireNetwork();
|
||||
|
||||
errors = neuralNetwork.GetErrors(data.testOutput[i]);
|
||||
|
||||
foreach (double error in errors)
|
||||
totalError += error * error;
|
||||
}
|
||||
|
||||
return totalError;
|
||||
}
|
||||
|
||||
/* ------------------------------------------------------------- */
|
||||
|
||||
public static double[] GetSoftMax(this NeuralNetwork neuralNetwork)
|
||||
{
|
||||
// TODO
|
||||
return null;
|
||||
}
|
||||
|
||||
public static int GetMaxIndex(this NeuralNetwork neuralNetwork)
|
||||
{
|
||||
double maxValue = double.MinValue;
|
||||
int maxIndex = 0;
|
||||
|
||||
int count = neuralNetwork.outputLayer.neurons.Length;
|
||||
for (int i = 0; i < count; i++)
|
||||
{
|
||||
double output = neuralNetwork.GetOutput(i);
|
||||
if (output > maxValue)
|
||||
{
|
||||
maxValue = output;
|
||||
maxIndex = i;
|
||||
}
|
||||
}
|
||||
|
||||
return maxIndex;
|
||||
}
|
||||
|
||||
/* ------------------------------------------------------------- */
|
||||
|
||||
public static void Train(this NeuralNetwork neuralNetwork, Data data, double learningRate)
|
||||
{
|
||||
double[] errors = null;
|
||||
for (int i = 0; i < data.trainInput.Count; i++)
|
||||
{
|
||||
neuralNetwork.SetInputs(data.trainInput[i]);
|
||||
neuralNetwork.FireNetwork();
|
||||
|
||||
errors = neuralNetwork.GetErrors(data.trainOutput[i]);
|
||||
|
||||
neuralNetwork.BackPropagate(errors, learningRate);
|
||||
}
|
||||
}
|
||||
|
||||
public static void BackPropagate(this NeuralNetwork neuralNetwork, double[] errors, double learningRate)
|
||||
{
|
||||
for (int i = 0; i < errors.Length; i++)
|
||||
Correct(
|
||||
neuralNetwork.outputLayer.neurons[i],
|
||||
errors[i],
|
||||
learningRate
|
||||
);
|
||||
}
|
||||
|
||||
public static void Correct(this INeuron neuron, double error, double learningRate)
|
||||
{
|
||||
if (neuron.Synapses == null)
|
||||
return;
|
||||
|
||||
double incoming = neuron.NeuronActivation.Derivative(neuron.Output) * error;
|
||||
foreach (ISynapse synapse in neuron.Synapses)
|
||||
Correct(synapse.From, incoming * synapse.Weight, learningRate);
|
||||
|
||||
double delta = incoming * learningRate;
|
||||
foreach (ISynapse synapse in neuron.Synapses)
|
||||
synapse.Weight += delta * synapse.From.Output;
|
||||
|
||||
neuron.Bias.Weight += delta;
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,23 @@
|
|||
using System;
|
||||
|
||||
namespace Syntriax.NeuralNetwork
|
||||
{
|
||||
public class DropoutNeuronDecorator : NeuronDecorator
|
||||
{
|
||||
private double dropoutRate = 0;
|
||||
public bool IsActive = false;
|
||||
public static Random Random = new Random(0);
|
||||
|
||||
public DropoutNeuronDecorator(INeuron neuron, double dropoutRate) : base(neuron) => this.dropoutRate = dropoutRate;
|
||||
|
||||
public override double Calculate()
|
||||
{
|
||||
base.Calculate();
|
||||
|
||||
if (Random.NextDouble() < dropoutRate)
|
||||
Output = 0.0;
|
||||
|
||||
return Output;
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,14 @@
|
|||
using Syntriax.NeuralNetwork.NeuronActivations;
|
||||
|
||||
namespace Syntriax.NeuralNetwork
|
||||
{
|
||||
public interface INeuron
|
||||
{
|
||||
ISynapse[] Synapses { get; }
|
||||
ISynapse Bias { get; }
|
||||
INeuronActivation NeuronActivation { get; set; }
|
||||
double Output { get; }
|
||||
|
||||
double Calculate();
|
||||
}
|
||||
}
|
|
@ -0,0 +1,49 @@
|
|||
using Syntriax.NeuralNetwork.NeuronActivations;
|
||||
|
||||
namespace Syntriax.NeuralNetwork
|
||||
{
|
||||
public class Neuron : INeuron
|
||||
{
|
||||
public ISynapse[] Synapses { get; private set; } = null;
|
||||
public ISynapse Bias { get; private set; } = null;
|
||||
|
||||
public INeuronActivation NeuronActivation { get; set; } = new Default();
|
||||
|
||||
public virtual double Output { get; private set; } = 0.0;
|
||||
|
||||
public Neuron(INeuron[] neurons = null)
|
||||
{
|
||||
if (neurons == null)
|
||||
{
|
||||
Synapses = new Synapse[0];
|
||||
Bias = new Synapse();
|
||||
return;
|
||||
}
|
||||
|
||||
Synapses = new ISynapse[neurons.Length];
|
||||
Bias = new Synapse();
|
||||
|
||||
int length = neurons.Length;
|
||||
for (int i = 0; i < length; i++)
|
||||
{
|
||||
Synapses[i] = new Synapse();
|
||||
Synapses[i].From = neurons[i];
|
||||
// Synapses[i] = new MomentumSynapseDecorator(Synapses[i]); // TODO
|
||||
}
|
||||
}
|
||||
|
||||
public double Calculate()
|
||||
{
|
||||
Output = 0.0;
|
||||
|
||||
foreach (ISynapse synapse in Synapses)
|
||||
Output += synapse.Output;
|
||||
|
||||
Output += Bias.Output;
|
||||
|
||||
Output = NeuronActivation.Activation(Output);
|
||||
|
||||
return Output;
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,36 @@
|
|||
using Syntriax.NeuralNetwork.NeuronActivations;
|
||||
|
||||
namespace Syntriax.NeuralNetwork
|
||||
{
|
||||
public abstract class NeuronDecorator : INeuron
|
||||
{
|
||||
protected INeuron _neuron = null;
|
||||
|
||||
public ISynapse[] Synapses => _neuron.Synapses;
|
||||
public ISynapse Bias => _neuron.Bias;
|
||||
|
||||
public INeuronActivation NeuronActivation
|
||||
{
|
||||
get => _neuron.NeuronActivation;
|
||||
set => _neuron.NeuronActivation = value;
|
||||
}
|
||||
|
||||
public virtual double Output { get; protected set; } = 0.0;
|
||||
|
||||
protected NeuronDecorator(INeuron neuron) => _neuron = neuron;
|
||||
|
||||
public virtual double Calculate()
|
||||
{
|
||||
Output = 0.0;
|
||||
|
||||
foreach (ISynapse synapse in Synapses)
|
||||
Output += synapse.Output;
|
||||
|
||||
Output += Bias.Output;
|
||||
|
||||
Output = NeuronActivation.Activation(Output);
|
||||
|
||||
return Output;
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,9 @@
|
|||
namespace Syntriax.NeuralNetwork.NeuronActivations
|
||||
{
|
||||
public class Default : INeuronActivation
|
||||
{
|
||||
public double Activation(double value) => value;
|
||||
|
||||
public double Derivative(double value) => value;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,8 @@
|
|||
namespace Syntriax.NeuralNetwork.NeuronActivations
|
||||
{
|
||||
public interface INeuronActivation
|
||||
{
|
||||
double Activation(double value);
|
||||
double Derivative(double value);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,19 @@
|
|||
namespace Syntriax.NeuralNetwork.NeuronActivations
|
||||
{
|
||||
public class Relu : INeuronActivation
|
||||
{
|
||||
public double Activation(double value)
|
||||
{
|
||||
if (value >= 0.0)
|
||||
return value;
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
public double Derivative(double value)
|
||||
{
|
||||
if (value >= 0.0)
|
||||
return 1.0;
|
||||
return 0.001;
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,11 @@
|
|||
using System;
|
||||
|
||||
namespace Syntriax.NeuralNetwork.NeuronActivations
|
||||
{
|
||||
public class Sigmoid : INeuronActivation
|
||||
{
|
||||
public double Activation(double value) => 1.0 / (1.0 + Math.Exp(-value));
|
||||
|
||||
public double Derivative(double value) => value * (1.0 - value);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,11 @@
|
|||
using System;
|
||||
|
||||
namespace Syntriax.NeuralNetwork.NeuronActivations
|
||||
{
|
||||
public class StaticActivation<T> where T : INeuronActivation, new()
|
||||
{
|
||||
private static readonly Lazy<T> instance = new Lazy<T>(() => new T());
|
||||
|
||||
public static T Instance => instance.Value;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,11 @@
|
|||
using System;
|
||||
|
||||
namespace Syntriax.NeuralNetwork.NeuronActivations
|
||||
{
|
||||
public class TanH : INeuronActivation
|
||||
{
|
||||
public double Activation(double value) => (Math.Exp(value) - Math.Exp(-value)) / (Math.Exp(value) + Math.Exp(-value));
|
||||
|
||||
public double Derivative(double value) => 1.0 - value * value;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,27 @@
|
|||
using System;
|
||||
|
||||
namespace Syntriax.NeuralNetwork
|
||||
{
|
||||
public class DropoutSynapseDecorator : SynapseDecorator
|
||||
{
|
||||
public bool IsActive = false;
|
||||
public Random random = null;
|
||||
|
||||
public override double Weight
|
||||
{
|
||||
get => base.Weight;
|
||||
set
|
||||
{
|
||||
if (random.Next() % 2 == 0)
|
||||
base.Weight = 0;
|
||||
else
|
||||
base.Weight = value;
|
||||
}
|
||||
}
|
||||
|
||||
public DropoutSynapseDecorator(ISynapse synapse, Random random = null) : base(synapse)
|
||||
=> SetRandom(random);
|
||||
|
||||
public void SetRandom(Random random) => this.random = random;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,9 @@
|
|||
namespace Syntriax.NeuralNetwork
|
||||
{
|
||||
public interface ISynapse
|
||||
{
|
||||
INeuron From { get; set; }
|
||||
double Output { get; }
|
||||
double Weight { get; set; }
|
||||
}
|
||||
}
|
|
@ -0,0 +1,27 @@
|
|||
namespace Syntriax.NeuralNetwork
|
||||
{
|
||||
public class MomentumSynapseDecorator : SynapseDecorator
|
||||
{
|
||||
private double _momentum = 0.0;
|
||||
private const double Beta = 0.9;
|
||||
|
||||
public override double Weight
|
||||
{
|
||||
get => base.Weight;
|
||||
set
|
||||
{
|
||||
double difference = value - base.Weight;
|
||||
|
||||
// TODO Might be an error here
|
||||
if (difference * _momentum >= 0.0 == _momentum >= 0.0)
|
||||
base.Weight = value + _momentum * Beta;
|
||||
else
|
||||
base.Weight = value;
|
||||
|
||||
_momentum = difference;
|
||||
}
|
||||
}
|
||||
|
||||
public MomentumSynapseDecorator(ISynapse synapse) : base(synapse) { }
|
||||
}
|
||||
}
|
|
@ -0,0 +1,25 @@
|
|||
namespace Syntriax.NeuralNetwork
|
||||
{
|
||||
|
||||
public class Synapse : ISynapse
|
||||
{
|
||||
private INeuron from = null;
|
||||
public INeuron From
|
||||
{
|
||||
get => from;
|
||||
set
|
||||
{
|
||||
if (from == null)
|
||||
from = value;
|
||||
}
|
||||
}
|
||||
|
||||
public double Output => Weight * (from == null ? 1.0 : from.Output);
|
||||
|
||||
|
||||
public double Weight { get; set; } = 0.0;
|
||||
|
||||
public Synapse() { }
|
||||
public Synapse(INeuron from) => this.from = from;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,16 @@
|
|||
namespace Syntriax.NeuralNetwork
|
||||
{
|
||||
public abstract class SynapseDecorator : ISynapse
|
||||
{
|
||||
protected ISynapse _synapse = null;
|
||||
|
||||
public INeuron From { get => _synapse.From; set => _synapse.From = value; }
|
||||
|
||||
public virtual double Output => _synapse.Output;
|
||||
|
||||
public virtual double Weight { get => _synapse.Weight; set => _synapse.Weight = value; }
|
||||
|
||||
protected SynapseDecorator(ISynapse synapse) => SetSynapse(synapse);
|
||||
public virtual void SetSynapse(ISynapse synapse) => _synapse = synapse;
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue