Generations Part 1
This commit is contained in:
parent
5c195a7b19
commit
ea71002d07
225
Genetic.cpp
225
Genetic.cpp
|
@ -2,7 +2,7 @@
|
|||
#include <time.h>
|
||||
|
||||
#define RandomRange 1
|
||||
#define InitialSynapseValue 1.0
|
||||
#define InitialSynapseValue 0.0
|
||||
#define MutationRate 0.0001
|
||||
|
||||
class Synapse;
|
||||
|
@ -20,6 +20,7 @@ float RandomFloat(int min, int max)
|
|||
srand(time(0) * counter++);
|
||||
value = ((rand() * counter) % ((max - min) * 100000));
|
||||
result = (float)value / 100000.0 + (float)min;
|
||||
// std::cout << "random is " << result << "\n";
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -281,11 +282,11 @@ float RandomFloat(int min, int max)
|
|||
{
|
||||
public:
|
||||
Input();
|
||||
void SetValue(int, float);
|
||||
void SetValue(float, int);
|
||||
};
|
||||
|
||||
Input::Input() : Layer() {}
|
||||
void Input::SetValue(int index, float value)
|
||||
void Input::SetValue(float value, int index = 0)
|
||||
{
|
||||
if(index >= this -> neuronSize || index < 0)
|
||||
return;
|
||||
|
@ -301,7 +302,7 @@ float RandomFloat(int min, int max)
|
|||
};
|
||||
|
||||
Output::Output() : Layer() {}
|
||||
float Output::GetValue(int index)
|
||||
float Output::GetValue(int index = 0)
|
||||
{
|
||||
float result = 0.0;
|
||||
|
||||
|
@ -333,7 +334,8 @@ float RandomFloat(int min, int max)
|
|||
bool SetOutputNeurons(int);
|
||||
bool ConnectLayers();
|
||||
float GetOutput(int);
|
||||
void SetInput(int, float);
|
||||
float GetScore(float, int);
|
||||
void SetInput(float, int);
|
||||
};
|
||||
|
||||
NeuralNetwork::NeuralNetwork()
|
||||
|
@ -374,7 +376,6 @@ float RandomFloat(int min, int max)
|
|||
(hidden + i) -> Mutate();
|
||||
|
||||
output -> Mutate();
|
||||
|
||||
}
|
||||
|
||||
void NeuralNetwork::RandomizeValues()
|
||||
|
@ -411,68 +412,194 @@ float RandomFloat(int min, int max)
|
|||
if(!(hidden + i) -> ConnectPrevious((hidden + i - 1)))
|
||||
return false;
|
||||
|
||||
if(output -> ConnectPrevious((hidden + hiddenSize - 1)))
|
||||
if(!output -> ConnectPrevious((hidden + hiddenSize - 1)))
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
float NeuralNetwork::GetOutput(int index)
|
||||
float NeuralNetwork::GetOutput(int index = 0)
|
||||
{
|
||||
return output -> GetValue(index);
|
||||
}
|
||||
|
||||
void NeuralNetwork::SetInput(int index, float value)
|
||||
float NeuralNetwork::GetScore(float target, int index = 0)
|
||||
{
|
||||
input -> SetValue(index, value);
|
||||
float result = GetOutput(index) - target;
|
||||
return result < 0.0 ? -result : result;
|
||||
}
|
||||
|
||||
void NeuralNetwork::SetInput(float value, int index = 0)
|
||||
{
|
||||
input -> SetValue(value, index);
|
||||
}
|
||||
#pragma endregion
|
||||
#pragma region Generation
|
||||
class Generation
|
||||
{
|
||||
private:
|
||||
NeuralNetwork *networks;
|
||||
int size;
|
||||
int step;
|
||||
float target;
|
||||
void SwapNetworks(NeuralNetwork *, NeuralNetwork *);
|
||||
NeuralNetwork *_CreateNetworks(int, int);
|
||||
public:
|
||||
Generation();
|
||||
Generation(int, int);
|
||||
~Generation();
|
||||
void Randomize();
|
||||
void Fire();
|
||||
void SortByScore(int);
|
||||
void DisplayScores(int);
|
||||
void SetTarget(float);
|
||||
void SetInput(float, int);
|
||||
bool CreateNetworks(int, int);
|
||||
bool ConnectNetworks();
|
||||
bool SetInputNeurons(int);
|
||||
bool SetHiddenNeurons(int, int);
|
||||
bool SetOutputNeurons(int);
|
||||
};
|
||||
|
||||
Generation::Generation()
|
||||
{
|
||||
step = 0;
|
||||
networks = NULL;
|
||||
size = 0;
|
||||
target = 0.0;
|
||||
}
|
||||
|
||||
Generation::Generation(int size, int hiddenSizes)
|
||||
{
|
||||
step = 0;
|
||||
target = 0.0;
|
||||
this -> size = size;
|
||||
networks = _CreateNetworks(size, hiddenSizes);
|
||||
}
|
||||
|
||||
Generation::~Generation()
|
||||
{
|
||||
if(networks) delete networks;
|
||||
}
|
||||
|
||||
NeuralNetwork *Generation::_CreateNetworks(int size, int hiddenSizes)
|
||||
{
|
||||
NeuralNetwork *newNetworks = NULL;
|
||||
newNetworks = (NeuralNetwork *) new char[sizeof(NeuralNetwork) * size];
|
||||
|
||||
if(newNetworks)
|
||||
for (int i = 0; i < size; i++)
|
||||
*(newNetworks + i) = NeuralNetwork(hiddenSizes);
|
||||
|
||||
return newNetworks;
|
||||
}
|
||||
|
||||
void Generation::Randomize()
|
||||
{
|
||||
for (int i = 0; i < this -> size; i++)
|
||||
(networks + i) -> RandomizeValues();
|
||||
}
|
||||
|
||||
void Generation::Fire()
|
||||
{
|
||||
for (int i = 0; i < this -> size; i++)
|
||||
(networks + i) -> FireNetwork();
|
||||
}
|
||||
|
||||
void Generation::SwapNetworks(NeuralNetwork *first, NeuralNetwork *second)
|
||||
{
|
||||
NeuralNetwork temp;
|
||||
temp = *first;
|
||||
*first = *second;
|
||||
*second = temp;
|
||||
}
|
||||
|
||||
void Generation::DisplayScores(int index = 0)
|
||||
{
|
||||
std::cout << "----Scores----\n";
|
||||
for (int i = 0; i < this -> size; i++)
|
||||
std::cout << i << " -> " << (networks + i) -> GetScore(target, index) << "\n";
|
||||
}
|
||||
|
||||
void Generation::SortByScore(int index = 0)
|
||||
{
|
||||
for (int i = 0; i < size - 1; i++)
|
||||
for (int j = i + 1; j < size; j++)
|
||||
if((networks + i) -> GetScore(target, index) < (networks + j) -> GetScore(target, index))
|
||||
SwapNetworks((networks + i), (networks + j));
|
||||
}
|
||||
|
||||
void Generation::SetTarget(float target)
|
||||
{
|
||||
this -> target = target;
|
||||
}
|
||||
|
||||
void Generation::SetInput(float value, int index = 0)
|
||||
{
|
||||
for (int i = 0; i < this -> size; i++)
|
||||
(networks + i) -> SetInput(value, index);
|
||||
}
|
||||
|
||||
bool Generation::CreateNetworks(int size, int hiddenSizes)
|
||||
{
|
||||
if((networks = _CreateNetworks(size, hiddenSizes)))
|
||||
this -> size = size;
|
||||
return networks;
|
||||
}
|
||||
|
||||
bool Generation::ConnectNetworks()
|
||||
{
|
||||
for (int i = 0; i < this -> size; i++)
|
||||
if(!(networks + i) -> ConnectLayers())
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Generation::SetInputNeurons(int size)
|
||||
{
|
||||
for (int i = 0; i < this -> size; i++)
|
||||
if(!(networks + i) -> SetInputNeurons(size))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Generation::SetHiddenNeurons(int index, int size)
|
||||
{
|
||||
for (int i = 0; i < this -> size; i++)
|
||||
if(!(networks + i) -> SetHiddenNeurons(index, size))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Generation::SetOutputNeurons(int size)
|
||||
{
|
||||
for (int i = 0; i < this -> size; i++)
|
||||
if(!(networks + i) -> SetOutputNeurons(size))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
#pragma endregion
|
||||
|
||||
int main(int argc, char const *argv[])
|
||||
{
|
||||
NeuralNetwork network(3);
|
||||
Generation generation(50, 3);
|
||||
std::cout << "1 - " << generation.SetInputNeurons(1) << "\n";
|
||||
std::cout << "2 - " << generation.SetHiddenNeurons(0, 2) << "\n";
|
||||
std::cout << "3 - " << generation.SetHiddenNeurons(1, 3) << "\n";
|
||||
std::cout << "4 - " << generation.SetHiddenNeurons(2, 2) << "\n";
|
||||
std::cout << "5 - " << generation.SetOutputNeurons(1) << "\n";
|
||||
std::cout << "6 - " << generation.ConnectNetworks() << "\n";
|
||||
|
||||
#pragma region Initialization
|
||||
network.SetInputNeurons(1);
|
||||
network.SetHiddenNeurons(0, 2);
|
||||
network.SetHiddenNeurons(1, 3);
|
||||
network.SetHiddenNeurons(2, 2);
|
||||
network.SetOutputNeurons(1);
|
||||
// generation.SetTarget(12.30);
|
||||
|
||||
network.ConnectLayers();
|
||||
#pragma endregion
|
||||
generation.DisplayScores();
|
||||
generation.SortByScore();
|
||||
|
||||
#pragma region Fixed Bias&Weight
|
||||
network.SetInput(0, 1);
|
||||
network.FireNetwork();
|
||||
std::cout << "Result = " << network.GetOutput(0) << "\n";
|
||||
|
||||
network.SetInput(0, 2);
|
||||
network.FireNetwork();
|
||||
std::cout << "Result = " << network.GetOutput(0) << "\n";
|
||||
|
||||
network.SetInput(0, 3);
|
||||
network.FireNetwork();
|
||||
std::cout << "Result = " << network.GetOutput(0) << "\n";
|
||||
#pragma endregion
|
||||
|
||||
#pragma region Randomized Bias&Weight
|
||||
network.RandomizeValues();
|
||||
std::cout << "Randomize Called!" << "\n";
|
||||
network.FireNetwork();
|
||||
std::cout << "Result = " << network.GetOutput(0) << "\n";
|
||||
|
||||
network.MutateNetwork();
|
||||
std::cout << "Mutate Called!" << "\n";
|
||||
network.FireNetwork();
|
||||
std::cout << "Result = " << network.GetOutput(0) << "\n";
|
||||
|
||||
network.MutateNetwork();
|
||||
std::cout << "Mutate Called!" << "\n";
|
||||
network.FireNetwork();
|
||||
std::cout << "Result = " << network.GetOutput(0) << "\n";
|
||||
#pragma endregion
|
||||
generation.Randomize();
|
||||
generation.Fire();
|
||||
generation.DisplayScores();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue